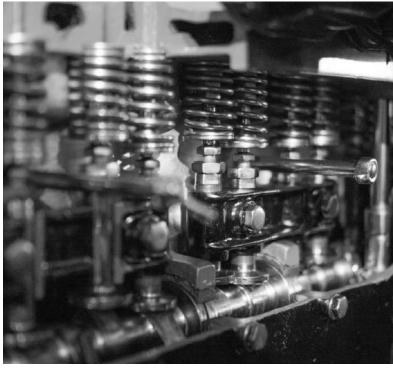

Elementos básicos de la hidráulica


ISBN: 978-9942-846-35-8

Autores:

Yadira Araceli Herrera Martínez Yenson Vinicio Mogro Cepeda Raúl Gregorio Martínez Pérez Jimmy Xavier Toaza Iza

SEMBLANZA DE LOS AUTORES

Yadira Araceli Herrera Martínez, Ingeniera en Finanzas CPA, de la Escuela Politécnica del Ejercito, Magister Administración de Empresas de la Universidad Católica del Ecuador, Maestrante de Marketing de la Universidad Internacional. Docente investigadora de la Universidad de las Técnica de Cotopaxi. Actualmente se desempeña como Docente del de la carrera de Ingeniería Hidráulica y tutor de vinculación.

Yenson Vinicio Mogro Cepeda, Ingeniero Civil especialidad Hidráulica de la Universidad Central del Ecuador, Magister en Gestión de la Producción de la Universidad Técnica de Cotopaxi, Diplomado Superior en Didáctica de la educación de la Universidad Técnica de Cotopaxi, Master en Gestión Ambiental de la Universidad Técnica Estatal de Quevedo. Docente investigador de la Universidad de las de la Universidad Técnica de Cotopaxi – Latacunga. Actualmente se desempeña como Director de la carrera de Ingeniería Hidráulica. La línea de Investigación es Energías alternativas y renovables, eficiencia energética y protección ambiental.

Raúl Gregorio Martínez Pérez, Ingeniero en Petróleos de la Universidad UTE, Magister en Dirección de Operaciones y Seguridad Industrial de la Universidad de las Américas, actualmente cursante del programa de Doctorado en Ingeniería Industrial en la Universidad Nacional Mayor de San Marcos, Perú. Con experiencia en el sector público y privado en control y fiscalización de hidrocarburos, calidad, seguridad y salud ocupacional, operaciones y logística. Cursos realizados en las áreas de Seguridad, Calidad, Procesos, Operaciones Petroleras y en el idioma inglés en la Escuela EF Education First en Chicago-Estados Unidos. En la actualidad se desempeña como docente en la Facultad de Mecánica de la Escuela Superior Politécnica de Chimborazo.

Jimmy Xavier Toaza Iza graduado como Ingeniero Mecánico por la Escuela Politécnica Nacional "EPN" en 2011, Master en Calidad, Seguridad y Ambiente por la Universidad Central del Ecuador en 2016. Actualmente trabaja como docente en la carrera de Ingeniería Hidráulica de la Universidad Técnica de Cotopaxi y sus campos de investigación está relacionado con la Tecnología de Recurso Renovable y Cuidado Ambiental

ÍNDICE

PROLOGO	1
CAPITULO I: INTRODUCCIÓN A LA ASIGNATURA	2
1.1 CONCEPTO DE HIDRÁULICA:	2
1.1.1. Importancia de la asignatura para el ingeniero civil	
1.1.2. Papel e importancia de la asignatura en el plan de estudio de la Carrera. Estructura y desarrollo	
1.2 LOS FLUIDOS.	
1.2.1. Definición	
1.2.2. Propiedades de los fluidos	3
1.2.3. Presión de vapor de los líquidos	
1.2.4. Compresibilidad y Elasticidad de los fluidos	
1.2.5. Tensión superficial y capilaridad	5
1.2.6. Clasificación del flujo de fluido	5
1.3. ECUACIÓN DE CONTINUIDAD	
1.4. ECUACIÓN DE ENERGÍA (ECUACIÓN DE BERNOULLI)	e
1.4.1. Conducciones forzadas. Expresiones para el cálculo de pérdidas de energía	7
1.4.2. Pérdidas de energía locales	
1.4.2.1. Determinación del coeficiente K y su aplicación	
1.4.2.2. Pérdidas debidas a los accesorios de las tuberías	11
CAPITULO II: BOMBAS - SELECCIÓN	12
2.1. DEFINICIÓN Y CLASIFICACIÓN DE LAS BOMBAS	17
2.1.1. Definición de Bomba	
2.1.2. Clasificación:	
2.1.3. Aplicaciones de las bombas rotodinámicas	
2.1.3.1. Bombas de flujo axial:	
2.1.3.2. Bombas de flujo radial o centrífugas:	
2.1.3.3. Bombas de flujo diagonal o mixto	14
2.1.4. Bombas de fluido impelente:	
2.2. CURVAS CARACTERÍSTICAS DE LAS BOMBAS.	
2.3. CÁLCULO DE CARGA DINÁMICA TOTAL DE BOMBEO	
2.3.1. Ecuación correspondiente a la curva resistente	
2.3.2. Acoplamiento de bombas en serie	
2.3.3. Acoplamiento de bombas en paralelo	
2.4 SELECCIÓN DE BOMBAS	
2.4.1. Criterios fundamentales de selección:	19
CAPITULO III: REDES ABIERTAS	21
3.1. PREDICCIÓN DE ABASTECIMIENTO DE AGUA	21
3.2. CARACTERÍSTICAS DE LAS REDES HIDRÁULICAS	
3.3. REDES DE ABASTECIMIENTO DE AGUA	22
3.3.1. Tipos de redes	22
3.4. REDES RAMIFICADAS (ABIERTAS)	
CAPITULO IV: CANALES	24
4.1. RÉGIMEN UNIFORME DE CIRCULACIÓN	24
4.1.1 Canal con régimen uniforme	
4.2. CLASIFICACIÓN Y PROPIEDADES DE LAS CONDUCCIONES LIBRES. RÉGIMEN UNIFORME	
4.2.1. Propiedades	
4.2.2. Ecuación de Manning	
4.2.3. Determinación de la n de Manning	
4.2.4. Secciones compuestas	

4.2.5. Profundidad de circulación normal	າາ
4.2.6. Método iterativo	
4.2.7. Pendientes normal y crítica	
4.2.7 Método de diseño de las velocidades permisibles en canales	
4.3. DISEÑO DE SECCIONES NO REVESTIDAS	
4.3.1. Análisis por simultáneo de ecuaciones	
CAPITULO V: HIDROLOGÍA	40
5.1. EL CICLO HIDROLÓGICO DE LA LLUVIA	41
5.2. CARACTERÍSTICAS GENERALES DEL ESCURRIMIENTO SUPERFICIAL DE LA LLUVIA	43
5.3. MEDICIÓN DE LAS PRECIPITACIONES	43
5.3.1. Condiciones generales	43
5.3.1.1. Fundamentalmente, existen tres tipos de instrumentos.	
5.3.2. Procedimiento utilizado para determinar la intensidad de la lluvia	47
5.4. FÓRMULA RACIONAL	
CAPITULO VI: DRENAJE PLUVIAL.	49
6.1. ELEMENTOS DE DRENAJE PLUVIAL DE EDIFICACIONES, URBANO Y VIAL	49
6.1.1. Redes de drenaje	
6.1.1.1. Redes de drenaje pluvial en edificaciones	
6.1.1.2. Características de la red de drenaje	
6.1.1.3. Pendiente del río principal	51
6.1.1.3. Redes de drenaje pluvial en vías urbanas	
6.1.1.4. Drenaje pluvial vial	
6.2. TORMENTA DE DISEÑO.	
6.2.1. Parámetros de la tormenta de diseño	
6.2.1.1. Intensidad máxima para un periodo de retorno dado a partir de curvas IFD	
6.3. HIETOGRAMA PARA EL PERIODO DE RETORNO DE DISEÑO	
6.3.1. Avenida de diseño	
6.3.2. Fórmulas y métodos empíricos	
6.3.3. Fórmula Racional	
6.3.3.1. Parámetros de la Fórmula Racional	69
CAPITULO VII: ALCANTARILLAS Y PUENTES	83
7.1. PRINCIPIOS DEL DISEÑO HIDRÁULICO DE ALCANTARILLAS Y PUENTES	
7.1.1 Alcantarillas	84
7.1.2. Puentes	84
b	122
$2 \cdot m \cdot y$	122
$2 \cdot \sqrt{y \cdot (D-y)}$	
v: \ ''	
Material de la superficie de las conducciones cerradas y abiertas	
Estado de la superficie	
Tipo de revestimiento	
BIBLIOGRAFÍA	
DIDLIUGKAFIA	152

ÍNDICE DE FIGURA

FIGURA 1	90
FIGURA 2 REPRESENTACIÓN GRÁFICA DE LA ECUACIÓN DE BERNOULLI PARA FLUJO IDEAL	90
FIGURA 3 REPRESENTACIÓN DE LA ECUACIÓN DE BERNOULLI PARA FLUIDO REAL	91
FIGURA 4	91
FIGURA 5 PARTES COMPONENTES ESENCIALES DE UNA MAQUINA HIDRÁULICA	92
FIGURA 6 REPRESENTACIÓN ESQUEMÁTICA DE UNA BOMBA ROTO DINÁMICA	92
FIGURA 7 BOMBA ROTO DINÁMICA CON ALABES DIRECTORES EN LA CAJA.	93
FIGURA 8 BOMBA CENTRÍFUGA: DISPOSICIÓN, ESQUEMA Y PERSPECTIVA	93
FIGURA 9 CURVAS CARACTERÍSTICAS DE LA BOMBA.	94
FIGURA 10 CURVAS CARACTERÍSTICAS DE UNA BOMBA	94
FIGURA 11 CURVAS CARACTERÍSTICAS INDIVIDUALES.	95
FIGURA 12 CURVAS PARA VELOCIDAD VARIABLE DE UNA BOMBA Y PARA DIÁMETRO VARIABLE DEL IMPELENTE	95
FIGURA 13 REPRESENTACIÓN ESQUEMÁTICA DE LA CARGA A ELEVACIÓN.	96
FIGURA 14 CARGAS ESTÁTICAS A CONSIDERAR EN UNA INSTALACIÓN CON BOMBA	96
FIGURA 15 PUNTO DE FUNCIONAMIENTO DE UNA INSTALACIÓN	96
FIGURA 16 BOMBAS HORIZONTALES COLOCADAS EN SERIE	97
FIGURA 17 CURVA DE DOS BOMBAS IGUALES EN SERIE	
FIGURA 18 CURVA DE DOS BOMBAS DIFERENTES ACOPLADAS EN SERIE	
FIGURA 19 REPRESENTACIÓN DE BOMBAS EN PARALELO (PÉREZ, 1999)	
FIGURA 20 CURVAS DE DOS BOMBAS IGUALES EN PARALELO.	
FIGURA 21 ANÁLISIS DE LA INSTALACIÓN DE DOS BOMBAS IGUALES EN SERIE O PARALELO	
FIGURA 22 CAMPO DE APLICACIÓN DE LOS DISTINTOS TIPOS DE BOMBAS ROTODINÁMICAS.	
FIGURA 23 ESQUEMA DE INSTALACIÓN DE LA BOMBA.	
FIGURA 24 TIPOS DE REDES SEGÚN LA TOPOLOGÍA (UPV, 1996)	
FIGURA 25 ESQUEMA DE UNA RED RAMIFICADA.	
FIGURA 26 EJEMPLO DE BASTO DE AGUA	
FIGURA 27	
Figura 28 Sección longitudinal de un canal.	
FIGURA 29 VARIANTES DE ESTABLECIMIENTO DEL RÉGIMEN UNIFORME.	
FIGURA 30 FUERZAS ACTUANTES EN EL RÉGIMEN UNIFORME.	
FIGURA 31 SECCIÓN NORMAL Y SECCIÓN VERTICAL.	
FIGURA 32 REPRESENTACIÓN DE LAS SECCIONES DE UN CANAL	
FIGURA 33 REPRESENTACION DEL PARFIL	
FIGURA 34 REPRESENTACIÓN DE LA SECCIÓN TRANSVERSAL	
FIGURA 35 SUBDIVISIÓN DE UNA SECCIÓN	
FIGURA 36 DIVISIÓN DE UNA SECCIÓN COMPUESTA.	
FIGURA 37	
FIGURA 38	
FIGURA 39 ESQUEMA DESCRIPTIVO DEL CICLO HIDROLÓGICO (CAMPOS, 1992)	
FIGURA 40 PLUVIÓMETRO	
FIGURA 41 PLUVIOGRAMA	
FIGURA 42 CURVAS MASA DE PRECIPITACIONES.	
FIGURA 43 PLUVIÓMETRO ENTERRADO PARA MEDIR LAS PRECIPITACIONES LÍQUIDAS	
FIGURA 44 EJEMPLO NOMOGRAMA PARA EL CÁLCULO DE LA INTENSIDAD DE LA LLUVIA DE DIFERENTES PROBABILIDADES	
CUALQUIER PUNTO DE LA REPÚBLICA DE LATINOAMÉRICA (CEN, 1984A).	
FIGURA 45 REPRESENTACIÓN DE LAS REDES DE DRENAJE (HIROSHI, 2003)	
FIGURA 46 MODELOS DE SINUOSIDADES DE LOS RÍOS Y SUS COEFICIENTES DE SINUOSIDAD.	
FIGURA 47 TIPOS DE CONTENES.	
FIGURA 48 TIPOS DE TRAGANTES	
FIGURA 49 ESQUEMA DE DRENAJE VIAL URBANO.	
FIGURA 50 CANALES DE DRENAJE URBANO	113

FIGURA 51 RELACIONES ADIMENSIONALES DE CAUDAL, VELOCIDAD, ÁREA Y RADIO HIDRÁULICO PARA SECCIÓN CIRCULAR, EN F	UNCIÓN DE LA
PROFUNDIDAD RELATIVA Y/D.	113
FIGURA 52 CURVAS IFD DEL PLUVIÓGRAFO H-350 (GONZÁLEZ, 2000)	114
FIGURA 53 EJEMPLO NOMOGRAMA PARA EL CÁLCULO DE LA INTENSIDAD DE LA LLUVIA DE DIFERENTES PROBABILIDADES Y DUF	RACIONES PARA
CUALQUIER PUNTO DE LA REPÚBLICA DE LATINOAMÉRICA (CEN, 1984A).	114
FIGURA 54 EJEMPLO MAPA ISOYÉTICO DE LAS PRECIPITACIONES MÁXIMAS DIARIAS DEL 1% DE PROBABILIDAD DE LA REPÚBLIC	CA DE
LATINOAMÉRICA (CEN, 1984a).	115
FIGURA 55 GRÁFICO DE UN HIETOGRAMA DE CÁLCULO (GONZÁLEZ, 2000)	116
FIGURA 56 GRÁFICO DE UN HIETOGRAMA REORGANIZADO (GONZÁLEZ, 2000)	
FIGURA 57 RELACIÓN LLUVIA ESCURRIMIENTO (USDA, 1986).	116
FIGURA 58 NOMOGRAMA PARA DETERMINACIÓN DEL TIEMPO DE CONCENTRACIÓN EN ZONAS URBANIZADAS	117
FIGURA 59 SUBDIVISIÓN DE LAS CUADRAS EN ÁREAS DE DRENAJE	117
FIGURA 60 DIVISIÓN EN ÁREAS PARCIALES DE DRENAJE.	118
FIGURA 61 RED DE DRENAJE RAMIFICADA DE UNA ZONA URBANA	118
FIGURA 62 UBICACIÓN DEL PUENTE EN EL CAUCE NATURAL	119
Figura 63	119

ÍNDICE DE TABLAS

TABLA 1 VALORES DEL COEFICIENTE DE RUGOSIDAD C DE WILLIAMS-HAZEN.	120
Tabla 2	121
TABLA 3 PROPIEDADES GEOMÉTRICAS DE LAS SECCIONES MÁS FRECUENTES (CHOW, 2004).	122
TABLA 4 VALORES DE N PARA DIFERENTES CANALES SEGÚN KUTTER (KING, 1962)	123
TABLA 5 VALORES DE LA N DADOS POR HORTON (LEÓN, 1989)	124
TABLA 6 VALORES PARA CALCULAR LA N DE MANNING SEGÚN LA ECUACIÓN 4.7 (CHOW, 1959).	126
TABLA 7 VALORES DEL COEFICIENTE N DE MANNING PARA CANALES EN SUELOS Y ROCAS	127
TABLA 8 VALORES DEL COEFICIENTE N DE MANNING PARA CANALES REVESTIDOS (CEN, 1984B)	128
TABLA 9 VALORES DE N PARA CANALES ARTIFICIALES SIN Y CON REVESTIMIENTO (FHWA, 2006).	
TABLA 10 VALORES DE N PARA CANALES ARTIFICIALES SIN Y CON REVESTIMIENTO (WSDOT, 2010).	129
TABLA 11 VALORES RECOMENDADOS DE N DE MANNING (BENÍTEZ, 2003).	131
TABLA 12 VALORES RECOMENDADOS DE N DE MANNING (NC, 1999)	132
TABLA 13 VELOCIDADES MÁXIMAS PERMISIBLES EN CUNETAS (BENÍTEZ, 2003)	132
TABLA 14 VELOCIDADES MEDIAS MÁXIMAS PERMISIBLES PARA CANALES EN SUELOS ARCILLOSOS (CEN, 1984B)	133
TABLA 15 VELOCIDADES MÁXIMAS PERMISIBLES EN CANALES REVESTIDOS CON HORMIGÓN (CEN, 1984B)	134
TABLA 16 VELOCIDADES MÁXIMAS PERMISIBLES PARA DISTINTOS REVESTIMIENTOS (FHWA, 2006).	134
TABLA 17 VELOCIDADES MÁXIMAS PERMISIBLES CON VARIOS REVESTIMIENTOS (DNIT, 2006)	134
TABLA 18 VELOCIDADES MÁXIMAS PERMISIBLES CON VARIOS REVESTIMIENTOS (NC, 1999).	135
TABLA 19 VALORES DEL COEFICIENTE DE ESCURRIMIENTO C PARA CUENCAS URBANIZADAS O POR URBANIZAR	136
TABLA 20 DIÁMETRO DE LAS COLUMNAS DE DESCARGA DE AGUAS PLUVIALES (CEN, 1985)	137
TABLA 21 DIÁMETRO DEL COLECTOR DE LAS AGUAS PLUVIALES (CEN, 1985).	137
TABLA 22 DIÁMETRO DEL BAJANTE PLUVIAL EN FUNCIÓN DEL GASTO (CEN, 1983B).	138
Tabla 23 Valores de rugosidad para alcantarillas de hormigón (Benítez, 2003).	138
TABLA 24 VALORES DEL COEFICIENTE DE RUGOSIDAD DE MANNING (BENÍTEZ, 2003).	138
TABLA 25 VALORES DEL COEFICIENTE DE RUGOSIDAD DE MANNING (FHWA, 2006).	139
TABLA 26 VALORES DEL COEFICIENTE PARA CONDUCTOS DE SECCIÓN CIRCULAR Y CAJÓN (WSDOT, 2010)	139
TABLA 27 VALORES DEL COEFICIENTE DE ESCURRIMIENTO C PARA CUENCAS URBANIZADAS O POR URBANIZAR	141
Tabla 28a Valores del coeficiente de evaluación M.	142
TABLA 29 VALORES DEL COEFICIENTE DE ESCURRIMIENTO C	142
TABLA 30 VALORES DE C PARA CUENCAS NO AFECTADAS POR EL CRECIMIENTO URBANO.	
TABLA 31 VALORES DE C SEGÚN EL TIPO DE SUPERFICIE DE LA CUBIERTA DE LA EDIFICACIÓN.	143
TABLA 32 NÚMERO DE CURVA DE ESCURRIMIENTO PARA ALGUNOS TERRENOS AGRÍCOLAS (USDA, 1986)	
TABLA 33 INSTALACIONES INDUSTRIALES, FABRILES Y CIVILES	
Tabla 34 Obras viales.	145
TABLA 35 POBLACIONES	146
Tabla 36 Probabilidades de la precipitación en zonas urbanizadas.	
TABLA 37 PROBABILIDADES DE PROYECTO EN DEPENDENCIA DE LA CATEGORÍA DE LA OBRA.	148
Tabla 38 Contribuciones de las áreas parciales de drenaje a los nodos o registros.	149
Tabla 39 Tiempos de concentración hasta los nodos o registros.	
Tabla 40 Probabilidades para el cálculo de los gastos de diseño (QD)	150
Tabla 41 Clasificación de los ríos de acuerdo al área de la cuenca y longitud.	150
TARIA 42 COOFFICIENTES DE SOCAVACIÓN	151

PROLOGO

La finalidad de este libro es dar a conocer la importancia de la HIDRAULICA y su relación con la HIDROLOGÍA, en una secuencia de cálculos en los temas de sistemas de redes, selección de bombas, obras de drenaje (puentes y alcantarillas), con una introducción acerca de la asignatura de hidráulica basado en sus fundamentos teóricos, como: "La hidráulica es la ciencia que forma parte la física y comprende la transmisión y regulación de fuerzas y movimientos por medio de los líquidos". Cuando se escuche la palabra "hidráulica" hay que remarcar el concepto de que es la transformación de la energía, ya sea de mecánica o eléctrica en hidráulica para obtener un beneficio en términos de energía mecánica al finalizar el proceso. Etimológicamente la palabra hidráulica proviene del griego Hydraulikos, que en el latín el adjetivo es Hydraulicus -a-um, la cual hace referencia a máquinas que son impulsadas por acción de la energía del agua. Algunos especialistas que no emplean el agua como medio transmisor de energía, sino al aceite, establecen los siguientes términos para su diferenciación: Oleodinámica, Oleohidráulica u Oleólica.

CAPITULO I: INTRODUCCIÓN A LA ASIGNATURA.

1.1 CONCEPTO DE HIDRÁULICA:

Relativo o perteneciente al agua, la energía hidráulica es económica. Parte de la mecánica de los fluidos que trata de las leyes que rigen los movimientos de los líquidos, y de las técnicas destinadas al aprovechamiento de las aguas o a la defensa y protección contra las mismas.

Las reglas de la hidráulica se funden en las leyes de la hidrodinámica y de la hidrostática y también en las siguientes suposiciones: los líquidos son isótropos, incompresibles y perfectamente fluidos, circulan en régimen permanente (o sea todas sus moléculas atraviesan una sección de la vena a igual velocidad) y continuo (pues, por hallarse en contacto las moléculas, las presiones se transmiten íntegramente de una a otra). El cálculo, apoyado por experimentos hechos con modelos reducidos, permite determinar con mucha precisión las características de los canales, presas, puertos, cañerías, sifones, etc.; calcular los roces con las paredes, las pérdidas de carga, los golpes de ariete, el régimen de los ríos, las mareas, etc.; diseñar y utilizar en condiciones óptimas las máquinas hidráulicas.

1.1.1. Importancia de la asignatura para el ingeniero civil.

Es de gran importancia el estudio de la hidráulica para el ingeniero civil, ya que le incorpora a este profesional una formación integral tal, que le permite dar solución a diversos problemas, como la proyección de obras componentes de los sistemas de evacuación, de drenaje pluvial (puentes y alcantarillas) y de abastecimiento, sin que este requiera de la actuación de un Ingeniero Hidráulico.

1.1.2. Papel e importancia de la asignatura en el plan de estudio de la Carrera. Estructura y desarrollo.

La carrera de Ingeniería Civil se afana en formar un profesional con un amplio conocimiento y posibilidades de aplicación de las ciencias básicas y de las ciencias de la ingeniería; aptos para proponer soluciones racionales y creativas de ingeniería enfocados a las edificaciones, las estructuras de todo tipo, las vías terrestres y con algunas incursiones en el campo de la hidráulica.

En el Modelo del Profesional de la carrera de Ingeniería Civil se señala dentro del objeto general de trabajo de la profesión "lograr un egresado con una formación integral tal, que sea capaz de proyectar obras componentes de los sistemas de evacuación, de drenaje pluvial (puentes y alcantarillas) y de abastecimiento, y cuya complejidad no exija de la actuación de un Ingeniero Hidráulico".

Es necesario entonces una Disciplina donde se aborden las leyes, conceptos y principios hidráulicos necesarios para la posterior comprensión de contenidos que se relacionan con esta ciencia y que se imparten en asignaturas subsiguientes del plan de estudio.

Además, la actividad profesional del ingeniero civil, lo mismo en el campo de las estructuras como

en el vial, lo enfrenta a situaciones en las tiene que aplicar conocimientos elementales de la hidráulica

para resolver problemas de poca complejidad que no necesariamente requieren de un Ingeniero

Hidráulico. (Barrero Ripoll & Pérez-Saborid, 2005)

1.2 LOS FLUIDOS.

1.2.1. Definición

Un fluido es una sustancia que se deforma continuamente, o fluye, cuando se somete a esfuerzos. El

término fluido abarca tanto a gases como a líquidos. Una masa dada de líquido, siempre ocupará un

volumen definido (aunque cambie de forma), mientras que el gas siempre ocupará el volumen del

recipiente que lo contenga. Los gases son compresibles, mientras que la baja compresibilidad (o

deformación volumétrica elástica) de los líquidos, es generalmente despreciada en cálculos, excepto en

aquellos relacionados con grandes profundidades en los océanos o en los cambios de presión en tuberías.

1.2.2. Propiedades de los fluidos

Tenemos dos recipientes, uno con agua y el otro con aceite, luego volteamos los dos. ¿Cuál se vacía

más rápido?

El recipiente del agua se vacía más rápido ya que el agua es menos densa que el aceite. A continuación,

veremos las diferentes propiedades de los fluidos.

Densidad (\square = ro)

La densidad de una sustancia, se define como la masa de la unidad de volumen de dicha sustancia.

Unidad de medida: Kg/m³

Peso específico (\square = gamma)

Se define como el peso de la unidad de volumen de una sustancia.

Unidad de medida: Kg/m³

Densidad relativa (\square = sigma)

La densidad relativa de una sustancia es la relación de su densidad, comparada con la densidad del agua

a una temperatura de 4°C y una presión (atmosférica) estándar. Esta medida es a dimensional.

3

Viscosidad de los fluidos ($\square \square = mu = Coeficiente$ de Viscosidad dinámica o absoluta)

La viscosidad es esa propiedad de los fluidos que, por virtud de la cohesión e interacción entre las moléculas del fluido, ofrece resistencia a la deformación (Shear Deformation). Diferentes fluidos se deforman a diferentes ratas bajo la acción de un mismo esfuerzo cortante. (Cano Gallego)

Fluidos con una alta viscosidad como la miel se deforman relativamente más despacio que los fluidos de baja viscosidad como el agua.

$$\mu = \text{Kg} / \text{m} \times \text{seg} = 10 \text{ poises}$$

Viscosidad Cinemática ($\square = nu$)

Es la relación de la viscosidad dinámica a la densidad de masa, expresada en m²/seg.

1.2.3. Presión de vapor de los líquidos

Un líquido en un recipiente cerrado está sujeto a una presión de vapor parcial debido al escape de moléculas de la superficie: este alcanza un estado de equilibrio cuando esta presión alcanza la presión de vapor saturado. Como esto depende de la actividad molecular, la cual es función de la temperatura, la presión de vapor de un fluido también depende de su temperatura y aumenta con ella.

Si la presión sobre un líquido alcanza la presión de vapor del líquido, hace que este hierva; por ejemplo, si la presión se reduce lo suficiente, el líquido puede hervir a la temperatura ambiente.

La presión de vapor saturada para el agua a 20 °C es
$$\frac{2,45\times10^3}{m^2}$$

1.2.4. Compresibilidad y Elasticidad de los fluidos

La compresibilidad es la propiedad que tienen los cuerpos de disminuir el volumen cuando se les comprime y se expresa mediante el coeficiente de compresibilidad, que relaciona la disminución del volumen que experimenta el volumen unitario al actuar sobre él la unidad de presión.

Todos los fluidos son compresibles bajo la aplicación de una fuerza externa y cuando se quita dicha fuerza, estos se expanden a su volumen original, exhibiendo la propiedad de que el esfuerzo es proporcional a la reducción volumétrica.

Tensión superficial y capilaridad 1.2.5.

Los líquidos poseen las propiedades de cohesión y adhesión debido a la atracción molecular. Debido a

la propiedad de cohesión, los líquidos pueden resistir pequeñas fuerzas de tensión en la interfase entre el

líquido y aire, conocida como tensión superficial: (\square : N/m: Mt⁻²).

Si las moléculas líquidas tienen mayor adhesión que cohesión, entonces el líquido se pega a las paredes

del recipiente con el cual está en contacto, resultando en un aumento (elevación) de la capilaridad de la

superficie del líquido; un predominio de la cohesión causa por el contrario una depresión de la

 $73 \times 10^{-3} \frac{N}{m}$

capilaridad. La tensión superficial para el agua a 20 °C es de

1.2.6. Clasificación del flujo de fluido.

Las dos propiedades básicas que se tienen en cuenta para clasificar los fluidos son las de

compresibilidad y viscosidad. La mecánica de los fluidos trata de fluidos que pueden ser

incompresibles o compresibles, es decir, fluidos con densidad constante o variable. Aunque, en

realidad no existe tal fluido incompresible, el término se emplea cuando el cambio en densidad debido

a la compresión es tan pequeño, que puede ser considerado despreciable. Por ello se considera, en

general, que los líquidos son fluidos incompresibles.

Atendiendo a estas dos propiedades básicas los fluidos se pueden clasificar de acuerdo a:

Su viscosidad, como:

Viscosos o naturales: Newtonianos (μ constante) y no Newtonianos (μ variable).

No viscosos o perfectos: $\mu = 0$.

Su compresibilidad, como:

Reales o naturales: Poco compresibles (E_{ν} constante) y compresibles (E_{ν} variable).

Perfectos: $E_v = 0$.

Existen otras propiedades de los líquidos que son de interés científico, principalmente, por lo que se

aplican más bien en el laboratorio, y no tienen tanto interés desde el punto de vista de la ingeniería,

5

salvo casos especiales (Hernandez, 1976). Dichos casos carecen de interés para el ingeniero civil.

ECUACIÓN DE CONTINUIDAD. 1.3.

 $Q = Vm \times A (3.31)$

donde:

Vm: velocidad media (m/s)

Q: gasto volumétrico o caudal (m³/s)

A: área de la sección transversal de la tubería (m²)

1.4. ECUACIÓN DE ENERGÍA (ECUACIÓN DE BERNOULLI).

$$\frac{p}{\gamma} + \frac{v^2}{2 \cdot g} + Z = H$$
 (3.46) donde:

v: velocidad media en la sección transversal, en m/s.

g: aceleración de la gravedad, $9,81 \text{ m/s}^2$.

p: presión, en N/m^2 (Pa).

 γ : peso específico del agua, 9,800 N/m^3 .

Z: elevación por encima del plano de referencia, en m.

H: energía total (constante).

 $P = \gamma x h$ donde h: columna de líquido

Luego, para un fluido incompresible no viscoso, resulta que a lo largo de la línea de corriente media entre los puntos 1 y 2 (**Figura 2.**) puede plantearse:

$$\frac{p_1}{\gamma} + \frac{v_1^2}{2 \cdot g} + Z_1 = \frac{p_2}{\gamma} + \frac{v_2^2}{2 \cdot g} + Z_2$$

 $\frac{p_1}{\gamma}$: Energía piezométrica o carga de presión. (m)

$$\frac{v_1^2}{2 \cdot g}$$
: Energía cinética o carga cinética. (m)

Hasta ahora se ha estado analizando el caso de un fluido ideal, es decir, un fluido que carece por completo de viscosidad. Este fluido ideal, al moverse en un conducto cerrado, tendrá todas sus partículas moviéndose en líneas paralelas y con la misma velocidad.

Aplicando Bernoulli entre las dos secciones 1 y 2, indicadas en la Figura 3.

$$H_1 = H_2 + h f_{1-2}$$

En conducciones forzadas:

$$Z_1 + \frac{v_1^2}{2 \cdot g} + \frac{p_1}{\gamma} = Z_2 + \frac{v_2^2}{2 \cdot g} + \frac{p_2}{\gamma} + hf_{1-2}$$

En conducciones libres:

$$Z_1 + \frac{v_1^2}{2 \cdot g} + y_1 = Z_2 + \frac{v_2^2}{2 \cdot g} + y_2 + hf_{1-2}$$

1.4.1. Conducciones forzadas. Expresiones para el cálculo de pérdidas de energía.

Fórmula de Williams-Hazen

$$hf = \frac{6,822}{C^{1,852}} \cdot L \cdot \frac{v^{1,852}}{D^{1,167}}$$

Expresando en función del gasto q_v resulta:

$$hf = \frac{10,671 \cdot L \cdot q_v^{1,852}}{C^{1,852} \cdot D^{4,871}}$$

donde C es el coeficiente de rugosidad de Williams-Hazen (Tabla 1).

hf: pérdida de energía

L: longitud

D: diámetro

$$K_L = \frac{10,671 \cdot L}{C^{1,852} \cdot D^{4,871}}$$

 K_L : Coeficiente que caracteriza la conductora.

De acuerdo con la expresión en función del gasto la pendiente de la rasante de energía es:

$$S = \frac{10,671 \cdot q_v^{1,852}}{C^{1,852} \cdot D^{4,871}} = \frac{h_f}{L}$$

$$V = 0.849C_1 \cdot R^{0.63} \cdot S^{0.54}$$

$$R = \frac{A_m}{P_m}$$

R: radio hidráulico (m)

 A_m : Área mojada (m²)

 P_m : Perímetro mojado (m)

$$R = \frac{A_m}{P_m}$$

Las *pérdidas por fricción* (continuas) son debidas a fuerzas resistentes al flujo relacionadas con el tipo de material que constituye el interior de las tuberías y su longitud, fundamentalmente; mientras que las *pérdidas locales* (discontinuas) son debidas a accesorios o elementos emplazados a lo largo de las tuberías.

Un criterio para calcular las pérdidas por fricción en las tuberías es aplicar fórmulas de tipo exponencial. Existe la tendencia de usar la fórmula de *Williams-Hazen*, la que sólo es utilizable para agua, y se expresa en el sistema métrico como:

$$hf = \frac{6,822}{C^{1,852}} \cdot L \cdot \frac{v^{1,852}}{D^{1,167}}$$
 (1.1)

Expresando en función del gasto q_v resulta:

$$hf = \frac{10,671 \cdot L \cdot q_{\nu}^{1,852}}{C^{1,852} \cdot D^{4,871}}$$
(1.2)

donde C es el coeficiente de rugosidad de Williams-Hazen.

De acuerdo con la expresión (1.2) la pendiente de la rasante de energía es:

$$S = \frac{10,671 \cdot q_v^{1,852}}{C^{1,852} \cdot D^{4,871}}$$
 (1.2a)

1.4.2. Pérdidas de energía locales

En una conducción simple sin *accesorios*, como codos y válvulas, y sin *singularidades*, como estrechamientos y ensanchamientos bruscos o graduales, no existen pérdidas menores o locales; por tanto, la pérdida obtenida por la fórmula para tuberías de sección circular: Williams-Hazen resulta ser la total, hf_T , la cual coincide con la *pérdida por fricción* en tramo recto, designada en lo adelante como hf_f . Esto es:

$$hf = hf_T = hf_f \tag{1.3}$$

Sin embargo, en las conducciones simples con accesorios y en las compuestas, la pérdida total hf_T será el resultado de sumar las pérdidas por fricción, de todos los tramos rectos del sistema de tuberías, y las pérdidas calculadas en los accesorios y las singularidades. Esto es:

$$hf_T = hf_f + \sum_{i=1}^n hf_{mi}$$
 (1.4)

siendo:

 hf_{mi} : pérdida local o menor del accesorio i, en m.

n: número de accesorios y singularidades del sistema de tuberías.

Las pérdidas locales pueden ser evaluadas por diversos métodos, resultando el más simple el basado en la carga de velocidad afectada por un coeficiente experimental establecido para cada accesorio. La forma general de la ecuación correspondiente es (Vennard & Street, 1979):

$$hf_{mi} = K_i \cdot \frac{v^2}{2 \cdot g} \tag{1.5a}$$

siendo:

 K_i : coeficiente experimental adimensional que se determina para el accesorio o singularidad i.

v: velocidad media del gasto considerado en el tramo recto de tubería de igual diámetro que el diámetro nominal del accesorio correspondiente, en m/s.

g: aceleración de la gravedad, en m/s^2 .

Expresando la ecuación (1.5a) en función del gasto:

$$hf_{mi} = \frac{0.811 \cdot q_v^2}{g \cdot D^4} \cdot K_i$$
 (1.5b)

Normalmente, las pérdidas por fricción en tuberías largas son mucho más importantes que las pérdidas menores, por lo que en determinadas circunstancias éstas se desprecian. No obstante, en determinados sistemas pueden llegar a ser más importantes que las producidas por los tramos rectos de tuberías. (Soto L., 1985)

En correspondencia con lo explicado anteriormente, y siempre que la velocidad representativa en los accesorios sea igual a la de la tubería recta, la pérdida de carga total en una *conducción simple* se puede obtener directamente, de acuerdo con:

➤ Williams-Hazen:

$$hf_T = \frac{10,671 \cdot L \cdot q_v^{1,852}}{C^{1,852} \cdot D^{4,871}} + \frac{0,811 \cdot q_v^2}{g \cdot D^4} \sum_{i=1}^n K_i$$
 (1.6)

En las *conducciones compuestas* las velocidades en los accesorios y los tramos de tubería recta no coinciden, por lo general, por lo que no es posible sacar factor común. Ante esta situación se deben calcular las pérdidas locales para cada accesorio, por separado y luego sumarlas.

1.4.2.1. Determinación del coeficiente K y su aplicación

El coeficiente de pérdida de carga local por ampliación brusca K_{ab} se puede determinar cómo (UPV, 1996):

$$K_{ab} = \left(1 - \frac{A_1}{A_2}\right)^2 \tag{1.7a}$$

donde:

A₁: sección del tramo de la tubería de entrada.

A₂: sección del tramo de la tubería de salida.

La aplicación de la ecuación (1.5a) resulta ser:

$$hf_{ab} = K_{ab} \cdot \frac{v_1^2}{2 \cdot g} \tag{1.7b}$$

✓ Paso de un conducto a un depósito:

El coeficiente de salida K_s es igual a la unidad cuando la entrada al depósito es libre (por encima de la superficie del agua) o sumergida con bordes rectos.

Si la entrada es sumergida con bordes redondeados, el rango de variación del coeficiente de salida está comprendido en el intervalo $0.5 < K_s < 1.0$.

La aplicación de la ecuación (1.5a) para determinar la pérdida de carga de salida no presenta particularidad alguna.

✓ Paso de un depósito a un conducto:

En el caso más corriente de entrada con bordes vivos, y al ras de la pared del depósito, el coeficiente de entrada K_e es igual a 0,5. En el caso de tubería saliente de la pared interior del depósito, el coeficiente de entrada está comprendido en el intervalo $0,75 \le K_e \le 1,0$.

La aplicación de la ecuación (1.5a) para determinar la pérdida de carga de entrada no presenta particularidad alguna.

Pérez (1986) señala que, en ocasiones, cuando la relación entre longitud de la tubería L y el diámetro D sea mayor de 5 000 (L/D > 5 000) se justifica no tener en cuenta las pérdidas de entrada y salida en los cálculos de una tubería determinada, o sea, considerar K_e y K_s nulos.

1.4.2.2. Pérdidas debidas a los accesorios de las tuberías

Accesorios	Valor de K
Válvula esférica (totalmente abierta)	10.0
Válvula de ángulo (totalmente abierta)	5.0
Válvula de seguridad (totalmente abierta)	2.5
Válvula de compuerta (totalmente abierta)	0.19
(1/4 cerrada)	1.15
(1/2 cerrada)	5.6
(3/4 cerrada)	24.0
Codo a 90° normal	0.9
Codo de radio mediano	0.75
Codo de radio largo	0.42
Salida de tubería	1.0
Entrada de tubería	0.2
Válvulas de bola	0.05

CAPITULO II: BOMBAS - SELECCIÓN.

2.1. DEFINICIÓN Y CLASIFICACIÓN DE LAS BOMBAS.

2.1.1. Definición de Bomba

Las bombas son equipos mecánicos que sirven para elevar los líquidos y conducirlos de un lugar a otro, o lo que es lo mismo, comunicarles cierta cantidad de energía (carga) que les permita vencer la resistencia de las tuberías a la circulación, así como, la carga que representa la diferencia de nivel entre el lugar de donde se toma el líquido y el lugar a donde se pretende llevar.

2.1.2. Clasificación:

- 1. Bombas de desplazamiento positivo (volumétricas): tienen un contorno móvil, que por cambios de volumen obliga al fluido a avanzar a través de la máquina. Se abre una cavidad en la que el fluido penetra a través de la toma de entrada, después se cierra la cavidad y se expulsa el fluido por la abertura de salida.
- **1.1. Bombas de pistón o reciprocantes:** desplazan el líquido por la acción de un émbolo o pistón con movimiento rectilíneo alternativo, o con movimiento de oscilación.

1.1.1 Si se tiene en cuenta la fuerza motriz que acciona a la bomba:

- a) Bombas de mano: se mueven por la acción muscular del hombre y son de pequeñas capacidades y carga.
- b) Bombas de transmisión: sus pistones se mueven mediante un sistema de bielas y manivelas que están conectadas a engranes y poleas que reciben la potencia de un motor conectado a ellas.

1.1.2 Si se tiene en cuenta la profundidad a que se bombea:

- a) Bombas de pozo llano
- b) Bombas de pozo profundo
- **1.2. Bombas rotatorias:** el desplazamiento del líquido se logra por el movimiento de rotación de los elementos de la bomba. Son unidades de desplazamiento positivo, que consisten en una caja fija que contiene engranes, aspas u otros dispositivos que rotan, y que actúan sobre el líquido, atrapándolo en pequeños volúmenes entre las paredes de la caja y el dispositivo que rota. Estas descargan un flujo uniforme.

2. Bombas de desplazamiento no positivo o roto dinámicas (fig.6): añaden cantidad de movimiento al fluido por medio de paletas o álabes giratorios, o por medio de ciertos dispositivos especiales. En estas máquinas no hay volúmenes cerrados. El fluido incrementa su cantidad de movimiento mientras se mueve a través de pasajes abiertos, y después convierte su alta velocidad en incremento de presión al salir a través de un difusor.

Son las que más se usan en las distintas aplicaciones para resolver los problemas que puedan presentársele al ingeniero. Tienen como ventajas la multiplicidad de diseños, el ocupar un espacio mínimo, la posibilidad de ser accionadas directamente por motores eléctricos de alta velocidad, el funcionamiento equilibrado por no existir en ellas fuerzas de inercia libres, un desgaste mínimo por el funcionamiento, la no existencia del peligro de que se desarrollen presiones anormales en este tipo de bombas.

Las máquinas rotodinámicas consisten esencialmente en dos partes: **el rodete o rotor**, que está animado de un movimiento de rotación y que tiene un grupo de álabes que dirigen el flujo por su interior, y **la caja o carcasa**, que se mantiene fija o estacionaria (**fig. 5**).

Al aplicarse una potencia mecánica al eje, el fluido adquiere un movimiento de rotación inducido por el rodete o impelente y pasa a la caja, para salir de ella a una presión mayor.

2.1.3. Aplicaciones de las bombas rotodinámicas

El campo de aplicación de las bombas rotodinámicas es muy amplio, por su gran adaptabilidad a motores eléctricos de alta velocidad y a turbinas de vapor, el número mínimo de partes móviles que las componen (lo que hace que el desgaste sea pequeño), el relativo bajo costo de la bomba, y su tamaño relativamente pequeño en relación con el caudal de líquido que pueden manejar.

Estas bombas se usan en abastecimiento a poblaciones, industrias, edificios, sistema de riego y drenaje, en alcantarillados de aguas residuales, en hidroacumuladoras, en alimentación de calderas, en refrigeración, en plantas térmicas y en la impulsión de toda clase de líquidos en instalaciones industriales, ya sean viscosos, corrosivos, jugos de frutas, leche etc. (Chanson, 2002)

2.1.3.1. Bombas de flujo axial: utilizadas para elevar grandes caudales a una altura más bien reducida. La carga de la bomba debe ser menor en relación con el caudal. El impelente de este tipo de bombas está provisto de paletas que inducen el flujo del líquido bombeado en dirección axial.

- 2.1.3.2. Bombas de flujo radial o centrífugas: utilizadas para caudales moderados y alturas notables. Son las más utilizadas en los sistemas de distribución de agua, así como en la evacuación de las aguas que pueden afectar las obras en construcción, o para trabajos propios de la construcción de obras. (Ver figura 8).
- 2.1.3.3. Bombas de flujo diagonal o mixto: se construyen dándole al impelente una forma tal que las paletas ya no quedan dispuestas en forma radial esto se hace, cuando el caudal de la bomba es grande y el diámetro del tubo de aspiración también es grande, en relación con el diámetro que debe darse al impelente para producir la carga requerida.
- **2.1.4. Bombas de fluido impelente:** operan consiguiendo la elevación del líquido a expensas de la energía que posee un fluido motriz.

2.2. CURVAS CARACTERÍSTICAS DE LAS BOMBAS.

El comportamiento real de una bomba (a una velocidad constante) se deduce de las *curvas características* obtenidas como resultado de los ensayos en laboratorios hidráulicos.

Representación gráfica de las características reales de funcionamiento de las bombas rotodinámicas. Curves características.

A una velocidad de rotación determinada, una bomba rotodinámica puede trabajar con una capacidad que variará desde cero hasta un valor máximo, que dependerá del tamaño y del diseño de la bomba. A causa de las características variables de este tipo de bombas, es importante tener una visión gráfica de las relaciones entre la carga, la capacidad, la eficiencia, la potencia necesaria, etc., de la bomba de que se trate a una velocidad determinada. Estas curvas o gráficos se preparan generalmente por los fabricantes como resultados de ensayos en laboratorios hidráulicos. Las curvas que aparecen en la figura 11, puede considerarse típicas e ilustran las características de una bomba rotodinámica trabajando a una velocidad constante determinada. Estas curvas, conocidas como curvas características relacionan, la carga, la eficiencia, la potencia necesaria y otros parámetros del comportamiento de las bombas, con la capacidad.

La figura 11, muestra curvas individuales a velocidad fija. También es costumbre presentar curvas para un diámetro de impelente determinado a distintas velocidades de rotación (figura 12a). Y para una velocidad fija determinada, para diferentes diámetros de impelente que caben en una misma caja (figura 12b).

Las curvas características tienen relación con la velocidad específica, la forma de los álabes y la razón, Y, entre el área de salida del impelente y el área de la garganta de la caja o carcasa. Se conoce de los textos elementales que las curvas de carga capacidad se empinan según crece la curva, que según crece el ángulo β_2 de salida la curva de carga capacidad sea plana, pero la teoría del efecto de la caja es poco conocida. (León, 2000)

2.3. CÁLCULO DE CARGA DINÁMICA TOTAL DE BOMBEO.

La *carga de bombeo* o *carga dinámica total* es la carga total contra la cual debe operar una bomba, es decir, la energía por unidad de peso de líquido que debe suministrarle la bomba al mismo para que pueda realizar el trabajo que se pretende.

Por consiguiente, la *carga dinámica total* (H_T) se obtiene por la suma de:

- 1. La diferencia de nivel, que se conoce como carga estática o carga a elevación.
- 2. La carga a presión.
- 3. La carga a velocidad.
- 4. Las pérdidas de carga debidas a la fricción en las tuberías y accesorios.

Lo que se formula mediante las expresiones:

$$H_T = H + \frac{p}{\gamma} + \frac{v^2}{2 \cdot g} + hf \tag{2.1}$$

$$hf = hf_T + hf_i (2.1a)$$

donde:

 $H_{\it T}$: Carga dinámica total requerida para conducir un gasto dado, en $\it m$.

H: Carga estática del sistema, en m.

$$\frac{p}{\gamma}$$
: carga a presión, en m .

$$\frac{v^2}{2 \cdot g}$$
: carga a velocidad, en *m*.

hf: Pérdidas totales solicitadas por el sistema para conducir el gasto, en m.

hf_T: pérdidas de carga en el sistema de tuberías (tramos rectos, accesorios y singularidades), enm.

 hf_i : pérdidas hidráulicas internas de la bomba, en m.

La *carga estática*, designada por H, representa la diferencia de nivel entre la superficie del líquido en el lugar donde tiene que tomarlo la bomba (nivel inferior) y la superficie del líquido en el lugar de descarga (nivel superior), según se muestra en la **Figura 14**, y está compuesta por la *carga estática de aspiración* H_a (distancia vertical entre el centro de la bomba y el nivel del líquido en el depósito de donde se extrae) y por la *carga estática de impulsión* H_i , (altura existente entre el centro de la bomba y la superficie del líquido en el depósito donde se descarga), o sea:

$$H = H_a + H_i \tag{2.2}$$

2.3.1. Ecuación correspondiente a la curva resistente

$$H_r = H_m = H + hf_T$$

siendo:

$$hf_T = hf_{Tsucc} + hf_{Timp} (2.3)$$

donde:

 hf_T : pérdida total en el sistema, en m.

 hf_{Tsucc} : pérdida total en la tubería de succión, en m.

 hf_{Timp} : pérdida total en la tubería de impulsión, en m.

siendo:

$$hf_T = hf_{Tsucc} + hf_{Timp} (2.3)$$

donde:

 hf_T : pérdida total en el sistema, en m.

 hf_{Tsucc} : pérdida total en la tubería de succión, en m.

 hf_{Timp} : pérdida total en la tubería de impulsión, en m.

Como se parte de conocer el diámetro de la tubería, longitud total recta, coeficiente de rugosidad (f, $C \circ n$) y las distintas singularidades y accesorios que presenta la instalación, solo se requiere calcular

la L_T (suma de la longitud total geométrica, más la longitud equivalente de las pérdidas menores) para expresar la pérdida total exclusivamente en función del caudal:

- Williams-Hazen:

$$hf_T = K \cdot q_v^{1,852} \tag{2.5}$$

En consecuencia, la ecuación correspondiente a la curva resistente será

$$H_r = H + K \cdot q_v^{1,852} \tag{2.6}$$

El punto de operación, de trabajo o funcionamiento de la instalación corresponderá a aquel caudal que iguale la altura motriz a la resistente (**Figura 15**).

Cuando el bombeo sea hacia un tanque abierto

$$H_T = H + hf (2.6)$$

La carga manométrica o dinámica que debe proporcionarle la bomba al sistema de tuberías es:

$$H_m = H + hf_T = H_T - hf_i \tag{2.7}$$

2.3.2. Acoplamiento de bombas en serie

Las leyes fundamentales del comportamiento de las bombas en serie serán:

- ✓ Se suman las cargas para caudales iguales.
- ✓ Se suman las potencias para caudales iguales.
- ✓ En el caso de que las dos bombas sean diferentes, el rendimiento de la combinación se calcula partiendo de la potencia total para caudales iguales.

Si las bombas que están en serie son iguales, entonces se tendrá que las cargas se duplicarán, triplicarán, etc., para capacidades iguales, según se trate de dos, tres o más bombas iguales colocadas en serie. El rendimiento de la combinación será el mismo que el correspondiente a una bomba, para cada caudal y la potencia necesaria se duplicará, triplicará, etc., según el caso.

2.3.3. Acoplamiento de bombas en paralelo

Se dice que dos o más bombas están operando en paralelo cuando sus caudales van a parar a una tubería común, sumándose para obtener una mayor descarga. En la **Figura 18** aparece una representación esquemática en planta de tres bombas horizontales colocadas en paralelo.

Como la carga a presión en la tubería común es una sola, cada bomba ajustará su funcionamiento a dicha carga, luego el resultado de la operación de bombas en paralelo será que:

- ✓ Se sumarán las capacidades o caudales de las distintas bombas a cargas iguales, para así obtener el caudal total de bombeo.
- ✓ La potencia necesaria resultante será la suma de las potencias para las cargas iguales correspondientes a cada caudal.
- ✓ El rendimiento de la combinación se determina para cada carga, a través de la potencia de la combinación como suma de las potencias individuales para cargas iguales.

2.4 SELECCIÓN DE BOMBAS

Existen tres *factores esenciales* que deben considerarse inicialmente en la selección: el *caudal* que debe entregar la estación de bombeo, la *carga dinámica total* que deben desarrollar las bombas y las *condiciones existentes de succión*.

En relación con el *caudal* que debe entregar la estación de bombeo, es necesario saber si la demanda es constante o variable; cuáles son sus valores máximo y mínimo; si hay alguna posibilidad de cambio de la demanda una vez que las bombas se hayan instalado. Esta información será importante en la determinación de la cantidad y el tamaño de las bombas a instalar en la estación.

La determinación de la *carga*, que deben desarrollar las bombas, demanda analizar en detalle el sistema completo. La carga de bombeo es un factor relevante en la definición del tipo básico de bomba a utilizar y del número de etapas de cada bomba.

Las *condiciones existentes de succión* (carga de aspiración máxima necesaria, sumergencia mínima necesaria) y los requisitos de instalación, en especial las condiciones de toma, pueden tener una influencia considerable en la selección del tipo de bomba.

La *naturaleza del líquido* que va a ser bombeado expresada por su viscosidad, densidad, temperatura, presión de saturación, agresividad, grado de contaminación, definirá detalles constructivos y tipos de materiales para las distintas partes de las bombas.

Las *condiciones de operación*, tales como el funcionamiento continuo o intermitente y la variación de la capacidad y carga necesarias durante cualquier período especifico de tiempo, influyen en el número de bombas a utilizar y en la forma de mover las bombas (por ejemplo, en la utilización o no de un sistema de velocidad variable para accionarlas).

Las *condiciones de instalación* definirán cuestiones tales como: el tipo de caja, la posición del eje de la bomba, la posición de los platillos de succión y descarga, la utilización de un pozo húmedo o un pozo seco, y otras.

El *tipo de energía* disponible definirá la velocidad de rotación máxima de las bombas, si están conectadas directamente al motor (por ejemplo: velocidad de 2 polos para motores eléctricos o velocidades mayores para turbinas de vapor).

Pueden también existir requisitos especiales, tales como limitaciones de espacio, de peso, o de transportación, que estarán en razón directa con el tamaño posible de las bombas

2.4.1. Criterios fundamentales de selección:

- El tipo básico de bomba (radial, de flujo mixto o de flujo axial) se selecciona a base de su comportamiento hidráulico).
- La posición del eje y el tipo de caja se deciden tomando en cuenta, básicamente, las *condiciones* de instalación.
- Las *condiciones de instalación y de succión* son determinantes en la selección de impelentes de simple o doble succión.
- El número de etapas a utilizar depende de las características del *tipo básico de bomba* seleccionada.
- Respecto a la carga dinámica total se tiene en cuenta el diagrama de la figura 21.
 - Si la carga es menor de 7metros deben utilizarse bombas axiales de una sola etapa.
 - Si la carga está entre 7 y 25 metros deben utilizarse bombas de flujo mixto de una etapa y quizás pudieran utilizarse bombas axiales de dos etapas si la carga no supera los 14 metros, aunque esta última solución no es común y depende también de las condiciones de succión, debido a la poca capacidad de succión que en general tienen las bombas axiales.
 - Si la carga es mayor de 25 metros y menor de 80, pueden utilizarse bombas radiales de una etapa o de flujo mixto de varias etapas. El tipo finalmente seleccionado surgirá del propio proceso de análisis.
 - Si la carga es superior a los 80 metros, pueden utilizarse bombas de flujo mixto o radial de varias etapas.

En la selección de las bombas también se incluyen consideraciones económicas, y por consiguiente, la selección lógica será, la de la bomba o bombas, que cumplan con los requisitos técnicos

establecidos y que presenten la combinación más favorable entre costo por metro cúbico bombeado, costo inicial distribuido a lo largo de un período de tiempo razonable y costo de mantenimiento durante dicho período. (González, Marrero, & Martínez J, 2001)

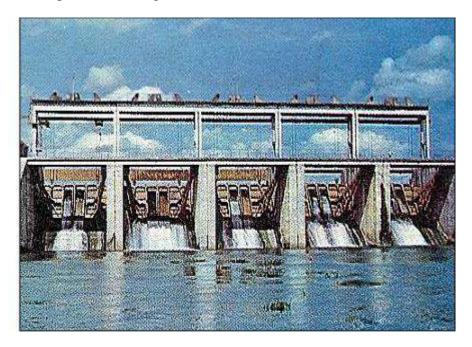
Ejercicios:

1.- La bomba centrífuga, cuyo esquema de instalación aparece en la **Figura 22**, debe bombear 70 l/s de agua. Los diámetros y longitudes de las tuberías de acero galvanizado se indican en el esquema. La toma y descarga se realizan en depósitos a la presión atmosférica. Considere C = 100 y desprecie la longitud de tubería recta por encima del nivel máximo en el tanque. ¿Cuál será la carga dinámica total contra la que deberá trabajar la bomba?

CAPITULO III: REDES ABIERTAS.

3.1. PREDICCIÓN DE ABASTECIMIENTO DE AGUA

La predicción de abastecimiento de agua es un elemento esencial para la explotación del sistema de suministro de agua para uso doméstico, industrial, de riego e hidroeléctrico. Las predicciones comúnmente toman la forma de volúmenes de flujo para duraciones específicas, por ejemplo, flujos anuales, estacionales o mensuales. La duración depende del carácter de la demanda y del volumen de almacenamiento existente en el sistema. Como la predicción de abastecimiento de agua abarca un período de tiempo mucho mayor que el de las predicciones meteorológicas, siempre habrá errores inevitables debidos a los eventos climáticos que se producen durante el período de predicción. Por lo tanto, se recomienda que se emitan varios valores de predicción con probabilidades de ser excedidos


Para el abastecimiento de agua se tienen en cuenta los siguientes principios:

- ✓ Servicio instantáneo.
- ✓ El agua debe ser potable.
- ✓ Garantizar determinado volumen a la presión necesaria para llegar al nivel del usuario.
- ✓ La disposición de las aguas residuales exige el no contaminar los cuerpos de agua que han de servir de receptores finales.
- ✓ Se resolverán problemas hidrológicos, sanitarios y económicos antes de prestar este servicio.
- ✓ Tener en cuenta las posibles fuentes que pueden ser superficiales o subterráneas.
- ✓ Realizar estudios hidrológicos relativos a la precipitación pluvial, el rendimiento del manto subterráneo, las pérdidas por posibles filtraciones o escurrimientos, la frecuencia y la intensidad de las lluvias, las probabilidades de crecidas o avenidas en los ríos.
- ✓ Considerar las limitaciones del tiempo (períodos de lluvia y sequía), el espacio, la calidad y la cantidad.
- ✓ Relacionar la cantidad disponible con las posibles demandas de los usuarios y la calidad del agua de acuerdo al uso que se le vaya a dar.

Es de gran importancia el aspecto económico de las instalaciones que se proyectan, para el cual los factores a considerar son los siguientes:

- 1. Período de diseño seleccionado.
- 2. Dimensiones y capacidades de las instalaciones.
- 3. Nivel de salubridad.
- 4. Equilibrio entre las necesidades y las inversiones.

Un sistema de acueducto para el abastecimiento de agua consta de la fuente, la conductora y la red de distribución. Se agregan los tanques de almacenamiento o de compensación que se puedan requerir, así como las posibles estaciones de bombeo, bien para extraer el agua de los pozos o bien para compensar las pérdidas de presión a lo largo de la conducción.

COMPUERTAS SOBRE EL VERTEDOR DE LA PRESA PREDROSO PARA REGULAR EL ABASTECIMIENTO AL RIO MAYABEQUE Y AL CANAL PEDROSO-GUIRA.

3.2. CARACTERÍSTICAS DE LAS REDES HIDRÁULICAS

Las redes hidráulicas se clasifican, según las funciones que cumplen, en dos grandes grupos:

- Redes de drenaje.
- Redes de abastecimiento de agua.

En esta clase estudiaremos las redes de abastecimiento de agua.

3.3. REDES DE ABASTECIMIENTO DE AGUA

3.3.1. Tipos de redes

La distribución del agua a los puntos de consumo se hace mediante redes de tuberías, que pueden tener funciones distintas, aunque su misión sea llevar agua a los usuarios. Se distinguen tres tipos:

- 1. Redes ramificadas (Abiertas): cuando el agua se distribuye en un solo sentido partiendo de una tubería principal, que se ramifica en otras tuberías generalmente llamadas secundarias y de estas a la vez se inician nuevas ramificaciones a las que de forma habitual se les llaman terciarias. Estas son redes abiertas (Figura 23).
- 2. Redes malladas. En este caso la distribución se efectúa en mallas cerradas, de forma que un punto de consumo puede recibir agua de ramales, donde en ocasiones, la circulación no es en el mismo sentido, sino que por equilibrio de presiones el agua acude al punto de consumo desde puntos que disponen de una presión más elevada (Figura 23).
- **3.** *Redes mixtas*: En ocasiones puede ser conveniente combinar los dos sistemas descritos, estableciendo una red en malla en el centro de una población y distribuir el agua a los barrios o zonas periféricos o extremos con una red ramificada (**Figura 23**).

De estos tres tipos de redes de abastecimiento de agua las que resultan de interés para el ingeniero civil son las redes ramificadas.

3.4. REDES RAMIFICADAS (ABIERTAS)

En este caso (**Figura 24**) los diámetros de las tuberías están habitualmente en orden decreciente, aunque cada ramificación tenga diámetros distintos según el caudal preciso para el suministro al usuario final. Las tuberías después de cada ramificación pueden reducir su diámetro porque el suministro restante siempre será inferior al anterior, antes de ramificarse. El diámetro está condicionado no sólo al caudal, sino también a la pérdida de carga, según la longitud del tramo a fin de que llegue al usuario final el caudal con la presión deseada. (Pérez Franco, 1983)

Datos necesarios para el diseño de una red abierta:

- 1. Plano de planta (Escala: 1: 2000) con las rasantes de las vías y los distritos en desarrollo (edificios, industrias, etc....).
- 2. La densidad de la población dada en habitantes por m².
- 3. La población futura.
- 4. En el plano trazar la red por donde se van a instalar, así como las tuberías maestras a lo largo de las calles.
- 5. Limitar el área que suministrará a cada rama.

Dotación: cantidad de agua a consumir por cada persona (m³/habitante)

Cantidad total de agua: habitantes x dotación (m³/habitantes).

A continuación, se indican los pasos a seguir en el *cálculo* hidráulico en una red ramificada:

1. Calcular el caudal consumido por cada nodo.

2. Calcular el caudal circulante por las tuberías o líneas que componen la red ramificada. El caudal

que circula por una línea i será la suma de los caudales consumidos en los nodos que se encuentran

aguas abajo de la misma.

3. Determinar el diámetro de cada línea. El diámetro escogido debe estar comprendido entre los

obtenidos al sustituir en la expresión de continuidad los valores de velocidad de circulación mínima

y máxima.

4. Determinar las pérdidas de carga totales producidas en cada línea aplicando las fórmulas de

Williams-Hazen.

5. Calcular la altura piezométrica y la presión en los nodos, aplicando la expresión de Bernoulli entre

el nodo cabecera y el nodo en cuestión.

EJERCICIOS

En la Figura 26 se muestra una red ramificada exterior alimentada por gravedad desde un depósito

situado a una cota Z = 90 m y compuesta por un total de siete líneas. Calcule la altura piezométrica y

presión en cada uno de los nodos de dicha red. La velocidad del flujo debe oscilar entre 0,40 y 3,00

m/seg. Considere un coeficiente de rugosidad n = 0.013. Las longitudes de las líneas se muestran en

la **Tabla 2.**

CAPITULO IV: CANALES

RÉGIMEN UNIFORME DE CIRCULACIÓN 4.1.

En una conducción libre ocurre régimen uniforme cuando en sus diferentes secciones las

características de circulación, velocidad, distribución de presiones, profundidad de circulación, etc.,

son iguales.

El flujo en las conducciones libres se estudia de acuerdo a los mismos tres criterios expuestos a

continuación:

24

- Criterio de tiempo.
- Criterio de espacio.
- Criterio de trayectoria.
 - Criterio de espacio

Régimen uniforme: la profundidad de circulación es la misma en cada una de las secciones analizadas de la conducción en un instante dado $(\delta y/\delta x = 0)$.

4.1.1 Canal con régimen uniforme

El establecimiento del régimen uniforme está sujeto al cumplimiento de numerosas restricciones físicas para que se cumpla que no exista variación de las características de circulación, velocidad, distribución de presiones y profundidad del agua a lo largo del tramo de canal analizado. Esto implica un canal de trazado recto, de fondo con pendiente constante, sin variaciones de gasto, ni de geometría de la sección, ni de sus dimensiones, ni variación de los factores que le dan valor a las fuerzas que resisten el movimiento.

Como se hace evidente, tales condiciones son posibles exclusivamente en conducciones de sección transversal constante, lo cual en la práctica queda restringido a las conducciones artificiales: canales y conductos artificiales cerrados.

De la definición del régimen uniforme puede obtenerse, como conclusión lógica, la más importante y evidente de sus propiedades: como la sección es constante, también lo es la profundidad, y como la velocidad es constante, también lo es la carga de velocidad; por lo que:

$$S_o = S_e = S_a \tag{4.1}$$

donde:

 S_0 : pendiente longitudinal del fondo del canal.

 S_e : pendiente de la rasante de energía.

 S_a : pendiente longitudinal de la superficie del agua.

En la práctica, no existe el régimen uniforme e impermanente; por lo tanto, solamente se suele hacer referencia al régimen permanente y uniforme con la denominación de *régimen uniforme*. Para mayor comodidad en el procesamiento matemático se utiliza sólo la letra *S* para denotar las pendientes de la rasante de energía y de la superficie del agua.

Para el logro del régimen uniforme es necesario que se establezca un equilibrio de las fuerzas que actúan sobre la masa de agua en movimiento, de modo que esta no presente aceleración (positiva o negativa) alguna, o sea, que exista un equilibrio entre las fuerzas gravitacionales y las de corte por fricción F_f (**Figura 27**). Esto es:

$$\gamma \cdot A \cdot sen\alpha = \tau \cdot P \tag{4.2}$$

donde:

 γ : peso específico del agua, en N/m^3 .

α: ángulo que forma el fondo con la horizontal.

A: área hidráulica, en m^2 .

τ: esfuerzo cortante unitario o de arrastre debido a la fricción en todo el perímetro mojado, en Pa.

P: perímetro mojado, en m.

Lo anterior es posible en tramos rectos suficientemente alejados de la entrada del canal o de su desembocadura, de puntos de inflexión horizontal o vertical, así como de puntos de captación del flujo. En las proximidades de esas zonas el flujo se acelera o desacelera variando su tirante, y ocurre entonces el régimen variado.

La ecuación (4.2) se puede expresar como:

$$\tau = \gamma \cdot \frac{A}{P} \cdot sen\alpha = \gamma \cdot R \cdot S \cdot \cos\alpha \tag{4.2a}$$

siendo:

R: radio hidráulico, en m.

S: pendiente longitudinal del fondo del canal (pendiente topográfica), en m/m.

4.2. CLASIFICACIÓN Y PROPIEDADES DE LAS CONDUCCIONES LIBRES. RÉGIMEN UNIFORME.

Las conducciones libres se pueden clasificar de diferentes formas:

• Según su naturaleza

- Conducción artificial: la formada por la mano del hombre. Puede ser indistintamente de sección transversal abierta o cerrada.

Canal de sección transversal abierta

- Conducción natural: la formada por procesos de la naturaleza. En el caso de conducciones naturales, que no han sido modificadas sustancialmente por la mano del hombre, pueden ser de sección transversal abierta (ríos, arroyos) o de sección transversal cerrada (túneles naturales, cavernas subterráneas); estas secciones son normalmente irregulares, de rugosidad variable a lo largo de su perímetro. (**Fig.30**)

• Según la variabilidad de forma y trazado

- *Prismáticas*: si la sección, en forma o dimensiones, y el perfil del fondo no varían en el tramo analizado.
- *No prismáticas*: si algunos de los parámetros anteriores varían.

• Según su objetivo

- Canales de drenaje.
- Canales recolectores.
- Canales de trasvase.
- Canales de riego.
- Canales de abasto.
- Canales para la navegación.

• Según sus dimensiones

-	Pequeñas	$q_{v} < 0.5 \ m^{3}/s$	y < 0.6 m
-	Medias	$0.5 \le q_v < 3.0 \ m^3/s$	$0.6 \le y < 1.2 \ m$
-	Grandes	$3.0 \le q_v < 10.0 \ m^3/s$	$1,2 \le y < 1,6 \ m$
-	Muy grandes	$q_v \ge 10.0 \ m^3/s$	$y \ge 1,6 m$

Según su categoría

- Magistrales: si son canales muy grandes que conducen todo el caudal del sistema.
- Principales: si son canales (grandes o pequeños) que conducen todo el caudal del sistema.
- Secundarias: canales que se derivan o tributan a los principales.
- Terciarias: canales que se derivan o tributan a los secundarios.
- Temporales: canales que se construyen por un corto período de tiempo.

Otras clasificaciones

- Según la geometría de la sección transversal.
- Según el tipo de revestimiento interior del canal.
- Según el método constructivo empleado.

4.2.1. Propiedades

En el estudio de las conducciones libres es fundamental dominar los conceptos básicos relacionados con las propiedades de la sección. Estas se agrupan en *propiedades geométricas*, que dependen exclusivamente de la geometría de la sección de la conducción y de la profundidad

de circulación del agua, y *propiedades hidráulicas*, que dependen no solo de la geometría de la sección, sino también del material que conforma la sección, de la pendiente longitudinal, de las curvas del trazado, entre otros factores.

Propiedades geométricas

Las conducciones naturales tienen en general secciones de forma irregular; por el contrario, los canales y cunetas artificiales son diseñados con secciones de figuras geométricas regulares, como pueden ser: triangulares, rectangulares, trapezoidales y semicirculares. La utilización de una u otra está determinado por diferentes factores, entre los que se destacan: el tipo de terreno, el gasto que debe conducir y la tecnología constructiva disponible.

Existen dos formas tradicionales de representar la sección transversal de un canal: la sección vertical y la sección normal. La *sección vertical* o simplemente sección (**Figura 31**) es la contenida en un plano vertical, *la sección normal* es la contenida en un plano normal al vector velocidad media que pasa por el punto donde se cruzan la sección vertical y el fondo de la conducción.

a) Las *propiedades geométricas*, que intervienen en los cálculos hidráulicos de cualquier conducción, León (2000) las agrupa en dos tipos de variables:

I. Variables básicas

Estas variables definen la geometría de la sección y comprenden:

- Ancho del plato o fondo del canal principal (b).
- ➤ Inclinación de los taludes (*m*).
- \triangleright Radio del conducto, si es semicircular (r).
- Diámetro del conducto, si es circular (D).
- Coordenadas de las secciones irregulares.

II. Variables asociadas

- ➤ Área mojada de la sección recta del canal por debajo de la superficie libre (A).
- Perímetro mojado por debajo de la superficie libre (*P*).
- ➤ Radio hidráulico (*R*):

$$R = \frac{A}{P} \tag{4.3}$$

- ➤ Ancho de la sección, medido por la superficie libre (*T*). También se le conoce como espejo de agua o ancho superficial.
- ➤ Profundidad hidráulica (*D*):

$$D = \frac{A}{T} \tag{4.4}$$

En las geometrías más comunes el cálculo del área hidráulica, del perímetro mojado y del espejo del agua es muy sencillo. (**Fig.35**)

En el caso de las secciones de geometría compuesta, el cálculo de *A*, *P* y *T* se puede realizar subdividiendo la sección en *n* subsecciones de figuras geométricas simples conocidas, tales como triangulares y trapeciales, las cuales deben responder también a criterios hidráulicos para facilitar los cálculos futuros, de tal manera que:

$$A = \sum_{i=1}^{n} A_i$$
; $P = \sum_{i=1}^{n} P_i$; $T = \sum_{i=1}^{n} T_i$

- b) Las propiedades hidráulicas más importantes de una sección son:
- ➤ La distribución de las velocidades, que en la sección normal de una conducción libre no es uniforme, debido a que en cada punto el vector velocidad es diferente.
- La velocidad media, que puede calcularse una vez que se conoce la distribución de velocidades en la sección.
- La energía y la cantidad de movimiento, que corresponden a dicha distribución de velocidades no uniforme, son diferentes de los que produciría una distribución uniforme.
- ➤ La distribución vertical de presiones, que puede considerarse que cumple con la ley de la hidrostática si el canal es de poca pendiente y el flujo es paralelo, es decir, si las líneas de corrientes no presentan curvaturas ni convergencias.
- * El perímetro mojado P es una aproximación satisfactoria en el intervalo $0 < x \le 1$, siendo x = 4y/T. Cuando x > 1 debe utilizarse la expresión exacta $P = (T/2) \cdot \left| \sqrt{1+x^2} + 1/x \ln(x + \sqrt{1+x^2}) \right|$.

4.2.2. Ecuación de Manning

El ingeniero irlandés Robert Manning presentó, en 1889, la fórmula que se identifica por su nombre. Esa fórmula fue posteriormente simplificada, y expresada en el sistema métrico como:

$$v = \frac{R^{\frac{2}{3}} \cdot S^{\frac{1}{2}}}{n} \tag{4.5}$$

donde:

v: velocidad promedio, en m/s.

R: radio hidráulico, en m.

S: pendiente longitudinal del cauce, m/m.

n: coeficiente de rugosidad de Manning.

Si se sustituye la fórmula (4.5) en la expresión general de continuidad, puede escribirse la fórmula general del gasto o caudal en el régimen uniforme, según Manning:

$$q_{v} = \frac{1}{n} \cdot A \cdot R^{\frac{2}{3}} \cdot S^{\frac{1}{2}}$$
 (4.6)

siendo:

A: área hidráulica de la sección transversal, en m^2 .

4.2.3. Determinación de la n de Manning

La Tabla 4 brinda los valores de *n* para diferentes condiciones de las conducciones, según Kutter; la **Tabla 5** brinda los valores de *n* para una mayor cantidad de tipos de conducciones, según Horton. Ambas tablas se utilizan para determinar el valor de *n* al aplicar la fórmula de Manning, pero es conveniente aclarar que de los experimentos y mediciones realizadas no puede pensarse que el valor de *n* de un canal dependa exclusivamente del material que constituye el lecho de este, y se mantenga invariable para diferentes condiciones de circulación.

En realidad, *n* varía ampliamente, y depende de numerosos factores que interactúan unos con otros modificándose mutuamente. Cowan, en 1956, propuso un método, que fue adoptado posteriormente por el Soil Conservation Service de los Estados Unidos de Norteamérica. Según Chow (1959) y Argüello (2001):

$$n = (n_0 + n_1 + n_2 + n_3 + n_4) \cdot m_5 \tag{4.7}$$

Los valores correspondientes a la formulación 4.7 están recogidos en la Tabla 6.

4.2.4. Secciones compuestas

Las secciones compuestas se caracterizan por un canal principal profundo que tiene, en uno o en los dos lados, canales menos profundos y mucho más anchos llamados llanuras de inundación, con una rugosidad bien diferenciada de la del canal principal. La multiplicidad de estas llanuras a diferentes

niveles, su variabilidad geométrica y su rugosidad propia hacen que el patrón de las velocidades en la sección se distorsione como función de estos cambios.

León (2000) ilustra los problemas asociados a la distribución de las velocidades, que es la base de partida de cualquiera de los estudios de secciones compuestas, realizados por diversos investigadores, tales como: Naot (1993), Knight (1984), Elliot (1990), Naot-Nezu y Nakagawa (1993).

Un procedimiento sencillo y muy utilizado para el estudio de secciones compuestas es el expuesto por Chow (1959), en el cual aconseja subdividir el canal en subsecciones, tomando en consideración los cambios de rugosidad y pendiente en la sección transversal del canal, como se muestra en la **Figura 36**.

De esta forma, se aplica la expresión de Manning para el gasto en cada subsección, de la forma:

$$q_{v_i} = \frac{1}{n} \cdot A_i \cdot R_i^{\frac{2}{3}} \cdot S^{\frac{1}{2}}$$
 (4.8)

donde:

 q_{vi} : gasto en la subsección i, en m^3/s .

 A_i : área de la subsección i, en m^2 .

 R_i : radio hidráulico de la subsección i, en m.

Por lo que el gasto total en la sección compuesta resulta ser:

$$q_{v} = \sum_{i=1}^{k} q_{v_{i}} \tag{4.9}$$

donde:

k: cantidad total de subsecciones en que se divide la sección.

La velocidad media se calcula despejando dicho término en la ecuación de continuidad

$$v = \frac{q_v}{A} \tag{4.10}$$

donde:

A: sumatoria de todas las áreas de las subsecciones.

León (2000) aborda otros métodos, con desarrollos teóricos profundos y diversos, que tratan de precisar el cálculo del gasto y la profundidad de circulación en secciones compuestas, los cuales presentan una mayor complejidad en su aplicación, tales como:

- ✓ Método de R. H. French (1985).
- ✓ Método de P. R. Wormleaton (1989).
- ✓ Método de Lambert-Sellin (1996).

4.2.5. Profundidad de circulación normal

Cuando el agua fluye uniformemente por un canal con geometría y dimensiones definidas, rugosidad equivalente para toda la sección y pendiente de fondo estable, mantiene una velocidad constante y una profundidad llamada profundidad normal (y_n) . La rasante de energía es paralela a la superficie del agua, dado a que la energía perdida es exactamente compensada por la gravedad.

Planteando la ecuación de Manning para el gasto como fórmula de trabajo, la profundidad que haga que se cumpla la igualdad dentro del rango de error preestablecido será, para ese error, la y_{n_i} lo que se puede plantear como (León, 2000):

$$q_{v} = \frac{1}{n} \cdot \left(A \cdot R^{\frac{2}{3}} \right)_{vr} \cdot S^{\frac{1}{2}} \pm e_{qv} \tag{4.11}$$

donde:

 e_{av} : error preestablecido relativo a q_v .

En este cálculo se acepta un error de \pm 0,01 q_v (1% de q_v); pero si se emplea para realizar los cálculos un medio de cómputo electrónico se pueden lograr y_n con errores tan bajos como se desee. La solución de la ecuación (4.11) se convierte en un pequeño problema numérico para la mayoría de las geometrías de la sección transversal, en las que la solución no es directa.

• Sección triangular

En la *sección triangular* es donde único es posible el cálculo directo de la profundidad normal. Para ello se deben seguir los siguientes pasos:

1. Concentrar los términos de la expresión de Manning que no dependen de la profundidad, los que se ubican en el miembro izquierdo:

$$\frac{q_{\nu} \cdot n}{\sqrt{S}} = A \cdot R^{2/3} \tag{4.12}$$

2. Sustituir en el miembro derecho la expresión de área hidráulica (*A*) y de radio hidráulico (*R*) correspondiente a la sección triangular (**Tabla 4.1**). Esto es:

$$\frac{q_{v} \cdot n}{\sqrt{S}} = m \cdot y^{2} \left(\frac{m \cdot y^{2}}{2 \cdot y \cdot \sqrt{1 + m^{2}}} \right)^{2/3} = \frac{m^{5/3} \cdot y^{8/3}}{\left(2 \cdot \sqrt{1 + m^{2}} \right)^{2/3}}$$
(4.13)

3. Despejar y calcular la profundidad normal:

$$y_{n} = \left[\frac{q_{v} \cdot n}{\sqrt{S}} \cdot \frac{\left(2 \cdot \sqrt{1 + m^{2}}\right)^{2/3}}{m^{5/3}} \right]^{\frac{3}{8}}$$
 (4.13a)

Secciones trapeciales y rectangulares

Una situación particular para las secciones trapeciales y rectangulares resulta si para el diseño es factible elegir, previamente, el valor de la relación b/y. En este caso la solución es directa.

Sustituyendo en (4.12) la expresión de área y radio hidráulico correspondiente a la sección trapecial:

$$\frac{q_{v} \cdot n}{\sqrt{S}} = \left(b \cdot y + m \cdot y^{2}\right) \cdot \left[\frac{b \cdot y + m \cdot y^{2}}{b + 2 \cdot y \cdot \sqrt{1 + m^{2}}}\right]^{\frac{2}{3}}$$

$$(4.14)$$

y de aquí se obtiene:

$$\frac{q_{v} \cdot n}{\sqrt{S}} = y^{\frac{8}{3}} \cdot \left(\frac{b}{y} + m\right)^{\frac{5}{3}} \left[\frac{1}{\frac{b}{y} + 2 \cdot \sqrt{1 + m^{2}}}\right]^{\frac{2}{3}}$$
(4.14a)

Despejando (y) en (4.14a) resulta:

$$y_{n} = \frac{\left(\frac{b}{y} + 2 \cdot \sqrt{1 + m^{2}}\right)^{\frac{1}{4}}}{\left(\frac{b}{y} + m\right)^{\frac{5}{8}}} \left(\frac{q_{v} \cdot n}{\sqrt{S}}\right)^{\frac{3}{8}}$$
(4.14b)

Para la sección rectangular m = 0, y sustituyendo este valor en la expresión (5.14b) resulta:

$$y_{n} = \frac{\left(\frac{b}{y} + 2\right)^{\frac{1}{4}}}{\left(\frac{b}{y}\right)^{\frac{5}{8}}} \left(\frac{q_{v} \cdot n}{\sqrt{S}}\right)^{\frac{3}{8}}$$
 (4.14c)

4.2.6. Método iterativo

Una forma muy común de determinar la profundidad normal, para un gasto dado, es seguir un proceso de tanteos. Para ello se recomienda el algoritmo de cálculo siguiente:

- 1. Concentrar los términos de la expresión de Manning que no dependen de la profundidad al lado izquierdo de la igualdad, y calcular su valor.
- 2. Fijar un valor de profundidad de circulación (y).
- 3. Calcular el área hidráulica (A) y el radio hidráulico (R) de la sección para la profundidad de circulación asumida.
- 4. Calcular el valor del miembro que depende de la profundidad.
- 5. Comparar el valor obtenido en ambos miembros:

Si $\frac{q_v \cdot n}{\sqrt{S}} \approx A \cdot R^{\frac{2}{3}}$, con una diferencia igual o menor que el 1%, el valor de y asumido se corresponde con la profundidad normal.

De lo contrario, si $\frac{q_v \cdot n}{\sqrt{S}} \neq A \cdot R^{\frac{2}{3}}$, es necesario fijar otro valor de y, repitiendo el proceso desde el paso 2.

Note como la profundidad normal depende de la pendiente, no así la profundidad crítica. Por tanto, el valor de la profundidad crítica permanecerá constante a menos que se trate de un canal no prismático, donde varíe el área de la sección transversal.

4.2.7. Pendientes normal y crítica

Pendiente normal

Por definición, la pendiente del fondo del canal donde se establece el régimen uniforme es denominada *pendiente normal*, o sea:

$$S = \frac{q_v^2 \cdot n^2}{\left[A^2 \cdot R^{\frac{4}{3}}\right]_v} \tag{4.15}$$

La pendiente normal será función del gasto, de la rugosidad equivalente, de la geometría y dimensiones de la sección transversal y de la profundidad normal.

Pendiente crítica

Si se produce en un tramo de una conducción libre un régimen que sea a la vez uniforme y crítico, la pendiente del fondo del canal se denomina *pendiente crítica*, o sea:

$$S_{c} = \frac{q_{v}^{2} \cdot n^{2}}{\left[A^{2} \cdot R^{\frac{4}{3}}\right]_{y_{c}}}$$
(4.15a)

La pendiente crítica será función del gasto, de la rugosidad equivalente, de la geometría y dimensiones de la sección transversal y de la profundidad crítica.

Si en un tramo de canal de geometría y dimensiones dadas, con un gasto y una rugosidad establecidas, se calcula la pendiente crítica (S_c) para esas condiciones y se compara con la pendiente real del fondo del tramo del canal (S_o), pueden presentarse los siguientes regímenes de circulación del flujo:

- ✓ Si $S_o = S_c$ y existen las condiciones para que se establezca el régimen uniforme, entonces $y_n = y_c$ y el régimen será uniforme-crítico.
- ✓ Si $S_o < S_c$ y existen las condiciones para que se establezca el régimen uniforme, entonces $y_n > y_c$ y el régimen será uniforme-subcrítico, y la pendiente normal se denomina pendiente subcrítica.
- ✓ Si $S_o > S_c$ y existen las condiciones para que se establezca el régimen uniforme, entonces $y_n < y_c$ y el régimen será uniforme-supercrítico, y la pendiente normal se denomina pendiente supercrítica.

4.2.7 Método de diseño de las velocidades permisibles en canales.

• *Velocidad mínima permisible* (v_{min}): es el valor límite de la velocidad media del canal para evitar sedimentación y crecimiento de plantas acuáticas. Este parámetro es de gran importancia en el diseño, y repercute fuertemente en la vida útil de la conducción y en la necesidad frecuente de mantenimientos.

En los canales de pequeñas dimensiones utilizados para el drenaje del pavimento (normalmente llamados cunetas), la velocidad mínima por efecto de la sedimentación, independientemente del revestimiento, debe ser $0.5 \, m/s$ (Pereira, 2006). Para el caso de canales magistrales aplicar la fórmula de S. A. Yirohkan .

• Velocidad máxima permisible (v_{max}): es el valor límite de la velocidad media del canal para evitar erosión en el material que conforma el perímetro de la sección. Este valor puede decidir

el revestimiento de la sección e influir en la selección del material. Debajo se muestran varias tablas con los límites críticos de la velocidad máxima para diferentes tipos de conducciones libres.

Las velocidades máximas permisibles están recogidas en la **Tabla 13** (para cunetas), en la **Tabla 14** (para canales en suelos arcillosos), en la **Tabla 15** (para canales revestidos con hormigón) y en las **Tablas 16, 17** y **18** (para diversos tipos de revestimiento). (González Fernández & Suárez R)

4.3. DISEÑO DE SECCIONES NO REVESTIDAS

Diseño de la sección de un canal erosionable (agua limpia o con sedimentos finos)

Método de la velocidad máxima permisible

Este método se sustenta en toda la base de datos experimentales existentes sobre la velocidad media máxima y la erosión, que abarcan numerosos tipos de suelos friccionales y cohesivos. El mismo tiene en su solución dos formas de análisis:

- > Simultaneo de ecuaciones de área y perímetro (solución de sistema de ecuaciones).
- Aproximaciones sucesivas del ancho de plato (variante iterativa).

4.3.1. Análisis por simultáneo de ecuaciones

Consiste, en esencia, en determinar los valores del área mojada y el perímetro mojado a partir de un valor de velocidad media previamente fijado, y con estos valores plantear un sistema de dos ecuaciones con el ancho de fondo (b) y la profundidad de circulación (y) como incógnitas. Una vez resuelto el sistema de ecuaciones, se puede obtener la sección transversal que satisface las condiciones de proyecto. El procedimiento a seguir es:

- 1. De acuerdo al material que forma el cuerpo del canal se estima el valor del coeficiente de rugosidad (n), el valor de la pendiente aceptable para los taludes de la sección (m), la velocidad máxima permisible (v_{max}) , la velocidad mínima permisible (v_{min}) , el valor de la pendiente longitudinal del fondo de la sección (S) y la geometría de la sección, además se debe conocer el caudal de diseño (q_v) .
- 2. Se fija un valor de velocidad que satisfaga la relación: $v_{\min} \le v \le v_{\max}$
- 3. Se calculan los valores de las propiedades hidráulicas de la sección:
 - a) El radio hidráulico (R) a partir de la ecuación del régimen uniforme.

- b) El área mojada y el perímetro mojado. El primer valor utilizando la ecuación de continuidad y el segundo a partir de la ecuación.
- 4. Se determinan las dimensiones del plato *b* (si la sección es trapecial), y la profundidad de circulación y mediante las ecuaciones geométricas del área y el perímetro. Para ello:
 - a) Se plantea la ecuación del área y el perímetro mojado de la sección. En estas dos ecuaciones *A*, *P* y *m* son ya conocidos, y sólo se tienen como incógnitas los valores de *b* e *y*.
 - b) Se despeja en la ecuación del perímetro el término b.
 - c) Se sustituye *b* en la ecuación del área, quedando una ecuación de segundo grado, siendo su solución del tipo:

$$y = \frac{-b \pm \sqrt{b^2 - 4 \cdot a \cdot c}}{2 \cdot a} \tag{4.16}$$

- d) Se calculan dos valores de la profundidad (y). De existir una solución negativa, esta se desprecia y se toma la positiva, esta solución permite obtener valores de (b) e (y) que satisfacen las condiciones de no erosión. Si ambos valores fuesen positivos, se calcula b con ambos valores y se escoge el valor factible (uno de los valores de (b) puede ser negativo o extremadamente desproporcionado) o la mejor combinación de (b) e (y) de las dos obtenidas. En caso de que (b) fuese negativo, se concluye que según las condiciones dadas el canal no puede diseñarse por este método, y debe o cambiarse la pendiente longitudinal del fondo del canal o revestirse el mismo.
- e) Reajustar (b) a un valor constructivo y recalcular (y).
- 5. Se comprueba si la relación $\beta = b/y$ se encuentra dentro de los parámetros:

$$2,2 \le b/y \le 5,0$$
 (como valores óptimos) (4.17)

$$1,0 \le b/y \le 6,0$$
 (como valores admisibles) (4.18)

Si la relación anterior escogida no se cumple, regresar al paso 1; de lo contrario, continuar al paso 6.

6. Calcular el área y la velocidad de circulación para el gasto máximo, y verificar que:

$$v_{\text{max permisible}} \ge v_{qv \, \text{max}}$$
 (4.19)

De no cumplirse, ir al paso 1 y cambiar la pendiente longitudinal, el tipo de material de revestimiento o el ancho de plato.

7. Calcular la profundidad cuando circula el gasto mínimo ($y_{av min}$)

8. Calcular y verificar la velocidad de circulación para el gasto mínimo.

$$v_{av \min} \ge v_{\min permisible}$$
 (4.20)

De no cumplir, ir al paso 1.

9. Se calcula el borde libre.

$$0.05 \cdot y \le BL \le 0.30 \cdot y \tag{4.21}$$

10. Se determina la altura total del canal.

$$H = y + BL \tag{4.22}$$

11. Se resumen los parámetros de diseño del canal.

Análisis por aproximaciones sucesivas

Esta forma de cálculo se basa en los mismos principios que la anterior, o sea, determinar el ancho del fondo y la profundidad normal de circulación de un canal que permita evacuar un caudal dado sin que se erosione. Se parte de la misma información básica y el procedimiento usual es:

- 1. De acuerdo al material que forma el cuerpo del canal se estima el valor del coeficiente de rugosidad (n), el valor de la pendiente aceptable para los taludes de la sección (m), la velocidad máxima permisible (v_{max}) , la velocidad mínima permisible (v_{min}) , el valor de la pendiente longitudinal (S) y la geometría de la sección.
- 2. Se calcula el término de la expresión de Manning que no depende de la profundidad:

$$q_{v} \cdot n / \sqrt{S} \tag{4.23}$$

- 3. Se supone un valor de (b).
- 4. Se determina el valor de $y_{qv max}$ correspondiente a la b supuesta aplicando la ecuación de Manning. Para este paso puede emplearse el algoritmo presentado en el epígrafe 4.6.4.
- 5. Se chequea b/y.

De no cumplir la condición, regresar al paso 3.

6. Se calcula el área y se verifica la velocidad de circulación correspondiente al gasto máximo.

$$v_{\text{max permisible}} \ge v_{qv \text{max}}$$

De no cumplirse, ir al paso 1 y cambiar pendiente longitudinal, tipo de material de revestimiento o ancho de plato.

- 7. Se calcula la profundidad, cuando circula el gasto mínimo ($y_{qv \min}$), y el área hidráulica.
- 8. Se calcula y se verifica la velocidad de circulación para el gasto mínimo.

$$v_{qv \min} \ge v_{\min permisible}$$

De no cumplir, ir al paso 1.

9. Se calcula el borde libre (*BL*).

$$0.05 \cdot y \le BL \le 0.30 \cdot y$$

10. Se determina la altura total del canal.

$$H = y + BL$$

11. Se resumen los parámetros de diseño del canal.

Ejercicio:

Problema 1

Se desea conocer la velocidad y el caudal capaz de evacuar el canal trapezoidal n**o** revestido (n = 0.02) que se muestra en la **Figura 37**, el que se encuentra emplazado en una pendiente longitudinal igual a 0.5%.

Problema 2

Determine el caudal capaz de evacuar el siguiente canal compuesto (**Figura 38**). Considere un valor de rugosidad igual a 0,03 y una pendiente longitudinal igual 0,2%.

CAPITULO V: HIDROLOGÍA

En este capítulo comenzamos el estudio Hidrología, donde estudiaremos el ciclo hidrológico de la lluvia, las características generales del escurrimiento superficial de la lluvia, así como la medición de las precipitaciones y la Fórmula Racional. Se explica brevemente cómo funciona el ciclo hidrológico de la lluvia, citando ejemplos que donde se evidencia este proceso.

La hidrología es la ciencia que estudia la presencia y la distribución de las aguas en la tierra, sus propiedades químicas, biológicas y físicas, y su interacción con el medio ambiente físico. De esta manera, es la base para resolver problemas prácticos de inundaciones y sequías, erosión y transporte

de sedimentos y contaminación de agua. En efecto, la creciente preocupación por la contaminación de las aguas superficiales y subterráneas, la lluvia ácida, el drenaje de zonas húmedas y otros tipos de cambios en el uso de la tierra, así como la amenaza que se cierne sobre los recursos hídricos debida a los cambios climáticos y al aumento del nivel del mar, han destacado el papel esencial que desempeña la hidrología en muchos proyectos relativos a medio ambiente.

5.1. EL CICLO HIDROLÓGICO DE LA LLUVIA

Ciclo Hidrológico: Circulación natural, regular y sucesiva del agua entre el mar, la atmósfera y la tierra, fundamento esencial de la vida y la transformación del planeta.

Abarca la serie de circunstancias en que el agua circula en la naturaleza. Este ciclo se concibe como un proceso en constante movimiento y desarrollo, y como cualquier ciclo en la naturaleza no puede ser entendido en un sentido absoluto, el Ciclo Hidrológico no tiene principio ni fin.

Es importante señalar que la energía, que directa o indirectamente, hace posible todo el trabajo de los cambios de estado y de sitio en las fases del Ciclo Hidrológico procede, fundamentalmente, de dos fuentes: la primera, el sol que proporciona la energía para elevar el agua (evaporación) y la segunda, la gravedad terrestre que hace que el agua condensada descienda (precipitación), así como, siga diversos caminos por la superficie terrestre (escurrimiento) o penetre en la misma (infiltración), siendo estos algunos de los diferentes procesos comprendidos en el Ciclo Hidrológico, como se observa en la **Figura 39**.

Los *procesos del Ciclo Hidrológico*: evaporación y transpiración (desde diferentes fuentes), condensación (formación de nubes), precipitación, escurrimiento superficial, infiltración y percolación (infiltración hasta el agua subterránea) se pueden observar en la **Figura 39**. Sánchez (1982) describe los procesos de dicho ciclo, de los cuales se resume lo siguiente:

Evaporación: es el proceso físico mediante el cual el agua pasa del estado líquido al gaseoso. La energía que realiza este trabajo procede del sol, y el viento es el elemento meteorológico que lo acelera. La evaporación se produce desde la superficie libre de las aguas y desde los suelos, y su tasa es mayor durante las horas diurnas que durante las nocturnas. La evaporación desde una superficie hídrica se expresa por la lámina de agua evaporada, lámina que se mide generalmente mediante un tanque evaporímetro.

Transpiración: es el proceso por el cual el agua que ha circulado a través de las plantas, desde las raíces hasta la superficie de las hojas, pasa a la atmósfera en forma de vapor de agua. El agua de interceptación que se deposita sobre las hojas, y que después se evapora, no constituye parte de la

transpiración, pero como es difícil distinguirla mediante las mediciones, para todo fin práctico se considera como transpiración.

Normalmente, es difícil medir separadamente la transpiración de la evaporación desde el suelo que rodea la planta, por lo que se miden ambos procesos en conjunto, denominándose e*vapotranspiración*.

Condensación: es el proceso mediante el cual, por lo general, ocurre la formación de nubes al condensarse el vapor de agua que va a la atmósfera, pero todos los tipos de nubes no producen, necesariamente, precipitaciones. Las nubes están constituidas por vapor de agua, en diversos grados de condensación, y partículas diminutas de agua cuyo diámetro promedio es del orden de las 40 micras. Las gotas de lluvia tienen diámetros de 400 a 500 micras, por lo que para producirse las lluvias tienen que ocurrir procesos que aumenten el tamaño de las gotas.

Precipitaciones: son todas las formas del agua atmosférica, derivada del vapor de agua, que se deposita en la superficie de la tierra. Las formas principales son: lluvia, nieve, agua nieve, niebla, granizo, rocío y escarcha. La producción de la lluvia es un aspecto de interés, al analizar las características del clima según la zona geográfica. Para que se produzcan lluvias es necesario que ocurra una corriente de aire ascendente que propicie el enfriamiento adiabático necesario para la condensación, por lo que una clasificación de las lluvias se puede hacer teniendo en cuenta que factor produce la columna de aire ascendente.

Infiltración: es el proceso por el cual el agua penetra la superficie exterior de los estratos del suelo, agua que moviéndose hacia abajo puede llegar al nivel freático. Esta agua repone primeramente el déficit de humedad del suelo y todo el exceso restante continúa moviéndose hacia abajo y se convierte en agua subterránea. La tasa máxima a la que el suelo de cualquier condición es capaz de permitir el paso del agua del medio exterior al interior se denomina su capacidad de infiltración.

Escurrimiento: se denomina así al agua que fluye por una corriente, que puede haberse hecho correr hasta el cauce desde una o varias fuentes diferentes, como son:

- 1. *Agua de lluvia caída directamente sobre la corriente superficial*, la que representa un volumen muy pequeño en relación con las demás fuentes.
- 2. *Escurrimiento superficial*, agua que cae como lluvia sobre la superficie del suelo y se abre paso hasta el cauce del río, sin infiltrarse en la tierra.
- 3. *Escurrimiento subsuperficial*, agua de lluvia que se infiltra y se mueve por las capas superficiales del suelo, volviendo a la superficie más adelante e incorporándose a la corriente. Generalmente se considera como parte del escurrimiento superficial.

4. *Escurrimiento subterráneo*, agua aportada por el manto freático, producto de lluvias que se infiltraron en el suelo, se unieron al agua subterránea y luego, días, semanas o meses después, se abrió el paso a través del suelo hasta la corriente superficial.

5.2. CARACTERÍSTICAS GENERALES DEL ESCURRIMIENTO SUPERFICIAL DE LA LLUVIA

El escurrimiento es la cantidad total de agua que fluye por cualquier sección de cauce de una cuenca como resultado neto del proceso que tiene la precipitación en el ciclo hidrológico.

El escurrimiento superficial es la parte de la lluvia caída que corre por la superficie del terreno y contribuye a la formación de las corrientes superficiales, ya sean perennes o intermitentes. Al cauce llegan las aguas que han caído en la cuenca receptora aguas arriba. (Soto L., 1985)

5.3. MEDICIÓN DE LAS PRECIPITACIONES

5.3.1. Condiciones generales

El volumen total de las precipitaciones que llegan al suelo durante un período determinado se expresa en función del nivel que alcanzarían sobre una proyección horizontal de la superficie terrestre, una vez se hayan fundido todas las precipitaciones caídas.

El objetivo principal de cualquier método de medición de las precipitaciones es obtener muestras representativas de la precipitación en la zona a que se refiera la medición. En hidrología, es fundamental medir el valor exacto de las precipitaciones. Por lo tanto, es muy importante que se tenga en cuenta la elección del emplazamiento y la forma y exposición del pluviómetro; además, deben tomarse medidas para impedir las pérdidas por evaporación, efectos del viento y salpicaduras.

5.3.1.1. Fundamentalmente, existen tres tipos de instrumentos.

1. Pluviómetros simples. - En principio cualquier recipiente abierto de paredes verticales puede servir de pluviómetro, porque 10 que interesa es retener el agua llovida para luego medirla. En el sistema métrico se mide en milímetros y décimos de mí1ímetro. Sin embargo, es importante que las dimensiones de estos instrumentos sean normaliza das para poder comparar las medidas tomadas en diferentes localidades.

El pluviómetro estándar del U.S. National Weather Service (fig. 40) consta de un recipiente cilíndrico (a), un embudo colector (b) de diámetro 8" y un tubo medidor (c) de área igual a

un décimo del área del embudo colector; de esta manera, 1 mm. de lluvia llenará el tubo medidor 10 mm. con el cual se mejora la precisión de la lectura. Con una regla graduada en mm. es posible estimar hasta los décimos de mm.

2. Pluviómetros registradores (**p1uviógrafo**). - Los pluviómetros simples sólo registran la cantidad de lluvia caída; nQ nos dicen nada acerca de la intensidad que ella adquiere en el transcurso de la precipitación, lo cual se consigue con los p1uviógrafos. La intensidad de la lluvia es un parámetro importante para el diseño de obras hidráulicas como veremos en su oportunidad.

Básicamente, el agua es recibida por un embudo y conducida a un de pósito con doble compartimiento, oscilante alrededor de un pivote.

El movimiento oscilante del depósito es trasmitido a una aguja que va marcando su trazo en un papel enrollado sobre un tambor que gira gracias a un mecanismo de relojería. El gráfico resultante recibe el nombre de pluviograma (fig. 41).

- **3. Pluviómetros totalizadores**. Se utilizan cuando hay necesidad de conocer la pluviometría mensual o estacional de una zona de difícil acceso, donde sólo se va unas pocas veces al año. Estos pluviómetros acumulan el agua llovida durante un período de tiempo más o menos largo. Para proteger el agua de la congelación se usa cloruro de calcio u otro anticongelante, y para protegerla de la evaporación una capa de aceite. .
 - Instalación. Deben evitarse las instalaciones en los tejados y laderas con mucho viento. El mejor lugar para instalar un pluviómetro será aquel donde haya una superficie plana rodeada con arbustos o árboles que sirvan de protectores contra el viento, pero estos no deben estar tan cerca al pluviómetro que lo obstruyan.
 - Curva masa de precipitación en una estación.- La curva masa es la representación de la precipitación acumulada vs. el tiempo. Se extrae directamente del pluviograma. Si en una zona hay instalados un pluviómetro registrador y otros no registradores, próximos al primero, es posible obtener también las curvas masa para los no registradores. Para ello se supone que la curva masa de la precipitación en un pluviómetro no registrador es proporcional en la forma a la del pluviómetro registrador, excepto en lo que se define de otra manera por las lecturas observadas y las notas. En la fig. 42 se han dibujado las curvas masa de la precipitación en cuatro estaciones próximas entre si (A, B, C, D), de las cuales sólo la estación A es registradora.

Emplazamiento del pluviómetro. - En una instalación ideal, el agua recogida en un pluviómetro representará las precipitaciones que se hayan producido en la zona circundante. Sin embargo, en la práctica es difícil crear estas condiciones debido a los efectos del viento, por lo que habrá que prestar gran atención a la elección del emplazamiento. Los efectos del viento se pueden considerar desde dos aspectos: efectos sobre el instrumento mismo, que en general reducen la cantidad de agua recogida, y efectos del emplazamiento sobre la trayectoria del viento, a menudo más importantes y pueden dar resultados superiores o inferiores de la precipitación medida.

Las perturbaciones creadas por un obstáculo dependen de la relación entre sus dimensiones lineales y la velocidad de caída de la precipitación. Este efecto se reduce, aunque no se elimina del todo, al elegir el emplazamiento de modo que la velocidad del viento al nivel de la boca del instrumento sea lo más pequeña posible, pero de manera que la lluvia no sea detenida por objetos circundantes, y/o al modificar los alrededores del pluviómetro de modo que la corriente de aire que pase sobre la boca de éste sea lo más horizontal posible. Todos los pluviómetros de una región o país deben estar instalados de manera similar y en las mismas condiciones. El pluviómetro se debe exponer con su boca en posición horizontal sobre el nivel del suelo. Si el emplazamiento lo permite, el pluviómetro deberá estar protegido del viento en todas las direcciones por objetos (árboles, arbustos, etc.), cuya altura sea lo más uniforme posible. La altura de estos objetos sobre la boca del pluviómetro deberá ser por lo menos la mitad de la distancia que existe entre el instrumento y los objetos (para proporcionarle una protección adecuada del impacto del viento), pero no deberá exceder la distancia existente entre el pluviómetro y los objetos (para evitar la intercepción de parte de la lluvia que llega al pluviómetro). La situación ideal es tener ángulos de 30° y 45° entre la cima del pluviómetro y la de los objetos circundantes.

Deben evitarse, como protección para el pluviómetro, objetos como rompe vientos consistentes en una sola hilera de árboles, pues tienden a aumentar la turbulencia en el sitio del pluviómetro. También debe evitarse la protección aislada o irregular cerca del pluviómetro, debido a los efectos variables e impredecibles que puedan tener sobre lo que éste capte. Cuando no sea posible garantizar una protección adecuada contra el viento, es mejor suprimir todos los obstáculos situados a una distancia del instrumento igual a cuatro veces sus respectivas alturas. Asimismo, deberá elegirse un emplazamiento cubierto de la fuerza del viento para impedir los errores de

mediciones que se puedan originar por este motivo. Siempre habrá que actuar con precaución, de modo que el emplazamiento elegido no produzca perturbaciones significativas en el flujo del viento. Convendrá evitar las pendientes y los suelos fuertemente inclinados en una dirección (sobre todo si ésta coincide con la del viento predominante).

Métodos de medición

Para la medición de la lluvia recogida en el pluviómetro se utilizan corrientemente dos métodos: una probeta graduada y una varilla graduada para la medición del nivel. La probeta graduada debe estar hecha de vidrio transparente, con un reducido coeficiente de dilatación, y llevar claramente indicadas las dimensiones del pluviómetro con el que ha de usarse. Su diámetro no debe ser superior a un tercio del de la boca del pluviómetro.

Las graduaciones deben marcarse con cuidado; por lo general, sólo se deben hacer cada 0,2 mm, indicando claramente las líneas correspondientes a cada milímetro entero. Es también conveniente que se marque la línea correspondiente a 0,1 mm.

Cuando no sea necesario medir las precipitaciones con tanta exactitud, la graduación será de 0,2 a 1,0 mm, y después cada milímetro siguiente, y señalar bien claro cada graduación correspondiente a 10 mm. Si se quiere que las mediciones sean exactas, el

error máximo de las graduaciones no debe exceder de ± 0.05 mm en la graduación correspondiente a 2 mm o por encima de ella, ni de ± 0.02 mm por debajo de esa marca.

Para lograr esta exactitud con pequeñas cantidades de lluvia, el interior de la probeta debe tener una base de forma cónica. En todas las mediciones, se debe tomar como línea básica el punto inferior del menisco de agua; es importante mantener vertical la probeta y evitar los errores de paralaje. Es útil, al respecto, que las principales líneas de graduación se repitan en el interior de la probeta.

Las varillas medidoras de nivel deben ser de cedro o de otro material apropiado que no absorba mucho el agua y cuyo efecto de capilaridad sea reducido. Las varillas de madera no deben usarse si se ha añadido aceite al colector para evitar la evaporación del agua; se usarán varillas de metal o de otro material fácil de limpiar.

Estas varillas deben tener un pie de metal para evitar el desgaste y estar graduadas de acuerdo con la relación entre la superficie de los cortes transversales de la entrada del pluviómetro y del recipiente, teniendo en cuenta el agua que desplaza la propia varilla. Se deben hacer marcas cada 10 mm. El error máximo de graduación admisible en una varilla de medición de

nivel no debe exceder ±0,5 mm en ningún punto. Si bien la medición puede hacerse con una varilla, siempre que sea posible, será mejor controlar el resultado con una probeta graduada.

5.3.2. Procedimiento utilizado para determinar la intensidad de la lluvia

La mayor precisión en su determinación se obtiene utilizando las *curvas IFD* de la zona donde se ubica la cuenca o área de drenaje; pero estas curvas, no obstante, su utilidad práctica, no han sido obtenidas para todas las zonas correspondientes a los fluviógrafos ubicados en todo el territorio nacional. Si estas curvas no existen, y no pueden ser elaboradas, se debe utilizar el *Nomograma para el cálculo de la intensidad de la lluvia de diferentes probabilidades y duración para cualquier zona según el Nomograma para el cálculo de la intensidad de la lluvia de diferentes probabilidades y duraciones.*

El procedimiento de trabajo con las curvas del Nomograma es el siguiente:

- 1. Escoger la recta de trabajo: de acuerdo con la NC 48-31 (CEN, 1984c) se determina la probabilidad de diseño o comprobación para la protección contra inundaciones de avenidas en las obras, de acuerdo al tipo (instalaciones industriales, fabriles o civiles; obras viales; poblaciones; obras hidro técnicas y áreas de cultivos y drenaje) y categorías (I, II, III y IV) de las obras.
- 2. Determinar la duración de la lluvia o tormenta de diseño.
- 3. Determinación de la curva isoyeta de trabajo: para ello se requiere contar con la última edición del Mapa de las curvas isoyetas del Ecuador para láminas de lluvias del 1% de probabilidad (Rodríguez, 2005), el cual es una actualización del que se recoge en el Anexo C de la NC 48-26 (CEN, 1984a) representado en la **Figura 44**. Con las coordenadas del cierre de la cuenca o área en estudio se determina la isoyeta correspondiente para los cálculos (H 1%).
- 4. Determinación de la intensidad: Se realiza de manera gráfica. Se entra con el valor (mm) de la curva isoyeta (H 1%) y se traza una vertical hasta tocar la recta a la probabilidad de diseño, y desde este intercepto se traza otra recta horizontal hacia la izquierda hasta interceptar la recta correspondiente al tiempo de duración de la tormenta (min), y por último, se logra el valor de la intensidad (mm/min) mediante el trazado de otra línea vertical. Este procedimiento se muestra en la **Figura 44**.

5.4. FÓRMULA RACIONAL

El método de la fórmula racional permite hacer estimaciones de los caudales máximos de escorrentía usando las intensidades máximas de precipitación. Se formula que el caudal máximo de escorrentía es directamente proporcional a la intensidad máxima Que la lluvia para un período de duración igual al tiempo de concentración, y al área de la cuenca. El tiempo de concentración representa el tiempo que demora una partícula de agua para trasladarse del punto más remoto de una cuenca hasta el punto de desagüe. Cuando haya transcurrido este tiempo toda la cuenca estará contribuyendo a formar el caudal de la escorrentía que tendrá en consecuencia un valor máximo.

La fórmula es:

$$Q_P = \frac{C \cdot I_p \cdot A}{36} \tag{5.1}$$

donde:

 $I_{\it P}$: intensidad de la precipitación, para la probabilidad dada ($\it cm/h$).

Ver mapa isoyético en L/T Temas de ingeniería hidráulica. Página 408

A: área de la cuenca (ha)

 Q_P : gasto o caudal para la probabilidad dada (m^3/s) .

C: coeficiente de escurrimiento Tabla 19

En la concepción de la fórmula racional se aceptan dos hipótesis importantes: que la precipitación ocurre con una intensidad uniforme durante un tiempo igual o mayor que el tiempo de concentración y que la intensidad de la precipitación es uniforme sobre toda el área de la cuenca. Estas premisas no son exactamente válidas, por lo que el uso del método racional se debe limitar a áreas pequeñas. El área límite de aplicación depende mucho de la pendiente, de la naturaleza de la superficie, de la forma de la cuenca y de la precisión exigida. La fórmula debe usarse con cautela para áreas mayores de 50 Ha y probablemente nunca para áreas mayores de 500 Ha. El valor de c varía según las características físicas y topográficas de la cuenca y según el tipo de cubierta vegetal. (González Fernández & Suárez R)

CAPITULO VI: DRENAJE PLUVIAL.

En este capítulo comenzamos el estudio del tema acerca del drenaje pluvial, donde estudiaremos los diferentes elementos de drenaje pluvial de edificaciones, urbano y vial, y también la Fórmula Racional Modificada. Explico brevemente en que consiste el drenaje pluvial y pregunto: ¿Qué importancia tiene el drenaje pluvial?

Una de las cuestiones más importantes en un sistema de drenaje pluvial son los grandes volúmenes de agua que han de circular por estos sistemas. Por ello la importancia de estimar estos valores con la mayor exactitud posible.

Recordar que: En estos sistemas de evacuación de agua de lluvia, se utiliza en nuestro país el método racional como el más generalizado para el cálculo del gasto.

6.1. ELEMENTOS DE DRENAJE PLUVIAL DE EDIFICACIONES, URBANO Y VIAL.

6.1.1. Redes de drenaje

La primera gran clasificación de las *redes de drenaje* es de acuerdo a la procedencia de las aguas que drenan, y se agrupan en:

- Redes de drenaje de aguas servidas o negras (redes de alcantarillado).
- Redes de drenaje de aguas pluviales.
 - La *red de alcantarillado* es el conjunto de obras e instalaciones necesarias en las poblaciones e instituciones de gran tamaño para evacuar las aguas residuales domésticas, industriales o agropecuarias. La *red de drenaje de aguas pluviales* es el conjunto de instalaciones técnicas destinadas a recolectar y conducir las aguas procedentes de las lluvias, lavado de calles y parqueos. Ambos tipos de redes pueden trabajar integradas en un solo sistema, y se dice que el sistema de drenaje es unificado, o como dos redes independientes (**Figura 45**), y entonces el sistema de drenaje se dice que es separativo.

Las *redes de drenaje de aguas pluviales* son las de interés para el ingeniero civil. Estas redes, de acuerdo a su ubicación en relación con la superficie del terreno, se clasifican en:

- Redes de drenaje superficial.
- Redes de drenaje subterráneo.

Las *redes de drenaje superficial* son las de interés a tratar en esta conferencia ya que se utilizan comúnmente en las obras civiles, tanto en las edificaciones como en las vías. Estas a su vez se pueden clasificar, en:

- Redes de drenaje pluvial en edificaciones.
- Redes de drenaje pluvial en vías urbanas.
- Redes de drenaje pluvial en vías rurales.

6.1.1.1. Redes de drenaje pluvial en edificaciones

Estas redes parten de las cubiertas de todos los tipos de edificaciones y se mantienen separadas de las redes de aguas servidas o negras, propias de las edificaciones. Los componentes principales de un drenaje pluvial de cubierta son: el área tributaria de aguas pluviales, las canaletas de drenaje en la cubierta y los bajantes y colectores pluviales.

El colector o conducto que evacua exclusivamente las aguas pluviales que caen sobre la cubierta de edificaciones, en el cual se entroncan las columnas de descarga o bajantes pluviales, debe ser diseñado para que trabaje libremente. En este caso, tanto el diámetro del colector como del bajante se pueden determinar por dos procedimientos:

- 1. A partir del *área de la superficie de cubierta* en proyección horizontal para una intensidad de lluvia de 10 *cm/h*, en correspondencia con la NC 53-146 (CEN, 1985). Para otra intensidad de lluvia, se multiplicarán los valores de áreas de la cubierta por la relación *I/10*, donde *I* es la nueva intensidad de la lluvia en *cm/h*.
- 2. A partir del *gasto hidrológico* que tributa el *área de la superficie de cubierta* para la intensidad de la lluvia de diseño, en correspondencia con la NC 48-14 (CEN, 1983b), aplicando las formulaciones hidráulicas correspondientes.

Procedimiento 1

En las **Tablas 20** y **21** se establecen los diámetros de las columnas de descarga y colectores de aguas pluviales, respectivamente. Los valores de la **Tabla 21** garantizan que el tirante del agua fluctúe entre el 30 y el 80% del diámetro del colector (CEN, 1985).

Procedimiento 2

En este procedimiento se debe determinar, primeramente, el gasto hidrológico que drena la cubierta por cada bajante pluvial aplicando una de las fórmulas descritas para el estudio del *drenaje pluvial de*

las cubiertas de las edificaciones, teniendo en cuenta las consideraciones planteadas para su aplicación.

Ya determinado el gasto, se procede a escoger el diámetro del bajante pluvial mediante el auxilio de la **Tabla 22.**

El diseño hidráulico del colector se realiza aplicando el procedimiento descrito en el epígrafe anterior, para conducciones libres cerradas circulares.

6.1.1.2. Características de la red de drenaje

La red de drenaje o sistema fluvial de una cuenca es el sistema de cauces por el que fluyen los escurrimientos superficiales, subsuperficiales y subterráneos, de manera temporal o permanente. Su importancia se manifiesta por su influencia en la formación y rapidez de drenado de los escurrimientos medios, máximos y extraordinarios, además de proporcionar indicios sobre las condiciones físicas del suelo y de la superficie de la cuenca.

Las principales características de la red de drenaje son:

- ✓ Características del cauce principal.
- ✓ Densidad de drenaje.
- ✓ Longitud media de las laderas.
- ✓ Tipos de corrientes.

Características del cauce principal

Las principales características del cauce o río principal son:

- ✓ Longitud
- ✓ Pendiente
- ✓ Perfil.
- ✓ Sinuosidad.

6.1.1.3. Pendiente del río principal

La pendiente del río principal de una cuenca se relaciona con las características hidráulicas del escurrimiento, en particular con la velocidad de propagación de las ondas de avenida y con la capacidad para el transporte de sedimentos (Klohn, 1970). Está pendiente se puede determinar de diferentes formas, de las cuales se presentan dos de ellas:

1. Utilizando el concepto simplificado de pendiente media

La pendiente media es la diferencia de nivel del cauce de agua para una longitud unitaria. En el caso de la pendiente del río, para toda su longitud será:

$$Yr = \frac{\Delta H}{Lr} \tag{6.1}$$

Siendo:

ΔH: diferencia de altura entre el origen y la desembocadura o cierre, en m.

Lr: longitud total del río, en km.

Yr: pendiente media del río, en º/oo.

No se recomienda su utilización, ya que por su definición se aleja mucho del perfil del cauce y por ello brinda valores por exceso, provocando errores significativos en los cálculos de variables hidrológicas que dependan de su magnitud.

2. Considerando la pendiente por el perfil suavizado

En ciertos lugares de Latinoamérica, en el año 1980, se publicaron los resultados de estudios detallados para determinar la formulación de la pendiente del cauce principal más conveniente para nuestras condiciones, arrojando resultados convincentes la expresión de la pendiente por el perfil suavizado (Mixnevich, 1980):

$$Yps = \left(\frac{\sum_{i=1}^{n} \sqrt{\Delta H_i L_i}}{\sum L_i}\right)^2$$
 (6.2)

donde:

 ΔH_i : equidistancia entre curvas de nivel, en m.

L_i: longitud de cada tramo del río entre curvas de nivel, en km.

Yps: pendiente del río por el perfil suavizado, en ^o/_{oo}.

6.1.1.3. Redes de drenaje pluvial en vías urbanas

Una red de drenaje pluvial urbano es el conjunto de instalaciones técnicas destinadas a recolectar y conducir las aguas procedentes de las lluvias, las que podrán ser vertidas en ríos, arroyos, lagunas, mares u otros lugares destinados a su captación o tratamiento, según la naturaleza de las mismas y la categoría del receptor en cuestión.

La red de drenaje pluvial en vías urbanas está compuesta, en lo fundamental, por:

- ✓ Los elementos de recolección y conducción superficiales (contenes).
- ✓ Los elementos de captación (tragantes o sumideros).
- ✓ Los elementos de inspección y unión (registros).
- ✓ Los elementos de conducción soterrados (emisarios) y superficiales (canales de drenaje).

Contenes

Los contenes son dispositivos que pueden ser utilizados como elementos de drenaje, de protección, o ambos se clasifican como: contén simple, contén integral (contén cuneta) y badén (**Figura 47**).

- ✓ *Contén simple*: consiste en un murete vertical de determinadas dimensiones que se construyen en los extremos de la calzada.
- ✓ *Contén integral*: además del murete vertical, posee una zona especial aledaña a él, conocida como cuneta, por donde debe circular el agua proveniente de la calzada y de las aceras. Por ello, también se le llama contén cuneta.
- ✓ *Badén:* es el elemento de drenaje superficial que por sus pequeñas dimensiones puede formar parte de la calzada, generalmente se sitúan en intersecciones, parqueos y plazas.

Tragantes o sumideros

Como complemento de los contenes simples e integrales surgen los sumideros o tragantes, cuyo objetivo es captar el agua pluvial que escurre superficialmente hacia los laterales de la vía. Se clasifican por la posición en que son ubicados con respecto al contén cuneta como (**Figura 48**):

- ✓ *Tragante buzón*: situado al borde del contén integral, con orificio en la pared vertical.
- ✓ *Tragante rejilla*: ubicado en la cuneta del contén integral, con rejilla en dicha zona.
- ✓ Tragante rejilla buzón: consiste en la unión de los dos anteriores, también conocido como tragante mixto.

El tragante rejilla tiene mayor capacidad de drenaje que el tragante buzón, aunque puede obstruirse más fácilmente. Las barras de las rejillas deben disponerse preferentemente perpendicular a la

dirección de la corriente y el ancho de la rejilla debe coincidir aproximadamente con el ancho de la cuneta del contén, así los tragantes pueden captar una parte importante del agua que escurre.

Registros

Los registros pueden cumplir varias funciones, a saber:

- ✓ *De observación*: se emplean para la limpieza y la explotación del sistema.
- ✓ *De caída*: se instalan cuando existen diferentes niveles entre tramos de tuberías, variaciones bruscas de pendientes y para disminuir velocidades, fundamentalmente en el último tramo de tubería del sistema, antes del vertimiento, cuando este es sumergido.
- ✓ *De limpieza*: se ubican en los tramos de tuberías donde se observan pequeñas velocidades de la corriente, y son destinado al lavado de los sedimentos.
- ✓ *De unión*: se construyen para unir varias tuberías a una principal.

Emisarios

Generalmente, en zonas urbanas, la conducción de las aguas pluviales desde los puntos de captación hasta el punto de vertido final se realiza a través de tuberías soterradas denominadas emisarios. Su función principal es alejar de forma rápida y eficiente las aguas pluviales.

La **Figura 49** muestra un esquema de los elementos descritos integrados en un sistema de drenaje vial urbano, conocido como micro-drenaje pluvial.

Canales de drenaje

Los canales de drenaje se consideran dentro del macro-drenaje de una zona urbana (**Figura 50**). A ellos pueden conectarse los micro-drenajes pluviales de diferentes zonas urbanas.

6.1.1.4. Drenaje pluvial vial

Los elementos hidráulicos que se deben considerar en el diseño de conducciones libres circulares cerradas, son:

- a) Área mojada (a, A).
- b) Perímetro mojado (p, P).
- c) Velocidad de circulación (v, V).
- d) Gasto o caudal (q_v, Q_v) .
- e) Coeficiente de rugosidad de Manning (n, N).
- f) Pendiente de la invertida de la tubería (S).
- g) Profundidad de circulación normal (y).

- h) Diámetro del conducto (D).
- i) Radio hidráulico (r, R).

Las letras minúsculas en la simbología se corresponden con la conducción libre que llena parcialmente el conducto y las letras mayúsculas corresponden a conducción libre con sección totalmente llena.

Es conocido que un conducto circular, donde el caudal llene por completo la sección transversal tiene las siguientes propiedades:

$$A = \frac{\pi \cdot D^2}{4} \; ; \quad R = \frac{D}{4} \; ; \quad v = \frac{1}{n} \left(\frac{D}{4}\right)^{\frac{2}{3}} \cdot S^{\frac{1}{2}} \; ; \quad Q = \frac{1}{n} \cdot \frac{\pi \cdot D^2}{4} \left(\frac{D}{4}\right)^{\frac{2}{3}} \cdot S^{\frac{1}{2}} = \frac{0.312}{n} \cdot D^{\frac{8}{3}} \cdot S^{\frac{1}{2}}$$

En tanto, un conducto circular parcialmente lleno de diámetro *D*, con una pendiente longitudinal *S* y una profundidad normal de circulación *y*, tiene los siguientes parámetros hidráulicos (León, 1989):

$$a = \frac{D^2}{4} \cos^{-1} \left(1 - 2 \cdot \frac{y}{D} \right) - D^2 \cdot \left(1 - \frac{y}{D} \right) \cdot \sqrt{\frac{y}{D} \cdot \left(1 - \frac{y}{D} \right)}$$

$$(6.3)$$

$$r = \frac{D}{4} - \frac{D \cdot \left(\frac{1}{2} - \frac{y}{D}\right) \cdot \sqrt{\frac{y}{D} \cdot \left(1 - \frac{y}{D}\right)}}{\cos^{-1}\left(1 - 2 \cdot \frac{y}{D}\right)}$$
(6.4)

$$v = \frac{1}{n} \cdot \left[\frac{D}{4} - \frac{D \cdot \left(\frac{1}{2} - \frac{y}{D}\right) \cdot \sqrt{\frac{y}{D} \cdot \left(1 - \frac{y}{D}\right)}}{\cos^{-1} \left(1 - 2 \cdot \frac{y}{D}\right)} \right]^{\frac{2}{3}} \cdot \sqrt{S}$$
 (6.5)

$$q = \frac{1}{n} \cdot \frac{\left[\frac{D^2}{4} \cdot \cos^{-1}\left(1 - 2 \cdot \frac{y}{D}\right) \cdot D^2 \cdot \left(1 - \frac{y}{D}\right) \cdot \sqrt{\frac{y}{D} \cdot \left(1 - \frac{y}{D}\right)}\right]^{\frac{3}{2}}}{\left[D \cdot \cos^{-1}\left(1 - 2 \cdot \frac{y}{D}\right)\right]^{\frac{2}{2}}} \cdot \sqrt{S}$$
(6.6)

El cálculo de estos parámetros hidráulicos se simplifica notablemente aplicando las fórmulas presentadas a continuación, para la sección circular. Para ello previamente se debe obtener el valor de θ según se indica en dicha tabla.

Puede observarse que intentar trabajar con las fórmulas (6.3) a (6.6) si bien es posible, resulta engorroso, y es por esa razón que se ha preferido obtener los valores de los elementos hidráulicos de las secciones parcialmente llenas: $\frac{a}{A}, \frac{r}{R}, \frac{v}{V}$ y $\frac{q_v}{Q_v}$ en función de $\frac{y}{D}$. De esta forma se obtiene:

$$\frac{a}{A} = \frac{1}{n} \cdot \cos^{-1} \left(1 - 2\frac{y}{D} \right) - \frac{4}{n} \cdot \left(\frac{1}{2} - \frac{y}{D} \right) \cdot \sqrt{\frac{y}{D} \left(1 - \frac{y}{D} \right)}$$

$$(6.7)$$

$$\frac{r}{R} = 1 - \frac{4 \cdot \left(\frac{1}{2} - \frac{y}{D}\right) \cdot \sqrt{\frac{y}{D} \cdot \left(1 - \frac{y}{D}\right)}}{\cos^{-1}\left(1 - 2\frac{y}{D}\right)}$$
(6.8)

$$\frac{v}{V} = \left(\frac{r}{R}\right)^{\frac{2}{3}} \tag{6.9}$$

$$\frac{q_{v}}{Q_{v}} = \frac{a}{A} \cdot \left(\frac{r}{R}\right)^{\frac{2}{3}} \tag{6.10}$$

La representación gráfica de estas expresiones (**Figura 51.**) es de gran ayuda para el diseño de este tipo de conducción. En el eje de las ordenadas se representa la relación y/D para distintas profundidades de circulación posible, y en el eje de las abscisas las diferentes relaciones entre los elementos hidráulicos de las secciones llenas y parcialmente llenas. Basta calcular los elementos hidráulicos de la sección circular llena, para determinar las correspondientes relaciones con cualquier llenado parcial. Para el cálculo de los parámetros hidráulicos de la sección llena se emplea la fórmula de Manning conjuntamente con la de continuidad.

Observe en la **Figura 51** como en las secciones circulares el área y el perímetro no aumentan proporcionalmente a la profundidad de circulación, por lo que el radio hidráulico máximo no se produce en la sección totalmente llena, sino, en una sección parcialmente llena con una determinada profundidad de circulación, que resulta ser $0.81 \cdot D$, siendo D el diámetro del conducto. Por otro lado, el gasto máximo se produce a $0.95 \cdot D$.

La forma de trabajo con las curvas características es muy sencilla. A continuación, se resume el trabajo con dichas curvas en los problemas típicos de diseño y/o revisión que se pueden presentar:

Caso I

Se conoce: $q_{v \max}$, $q_{v \min}$, $v_{q_v \max permisible}$, $v_{q_v \min axpermisible}$

Se desea determinar: D

- 1) Definir n y S
- 2) Calcular el diámetro correspondiente al caudal $q_{\nu \text{max}}$, aproximando dicho valor al inmediato superior comercial, de ser necesario.
- 3) Para el diámetro comercial seleccionado, calcular la capacidad (Q_v) y la velocidad de circulación ($V_{q_v \max}$).
- 4) Calcular $\frac{q_{v \text{max}}}{Q_v}$
- 5) Determinar $\frac{y_{q_v \text{ max}}}{D}$

Se busca el valor $\frac{q_{v\max}}{Q_v}$ en el eje de las abscisas y se sube verticalmente. En el punto donde se intercepta la vertical con la curva correspondiente, se desplaza horizontalmente hacia el eje de las ordenadas, hallando así la relación $\frac{y_{q_v\max}}{D}$.

- 6) Verificar si la relación $\frac{y_{q_v \text{ max}}}{D}$ cumple con lo especificado según la función que realizara la tubería que se diseña.
 - De cumplir pasar al paso 7

De no cumplir regresar al paso 1. Se puede cambiar de diámetro, la rugosidad y/o la pendiente

7) Determinar la relación $\frac{v}{V}$.

A partir de $\frac{y}{D}$, localizado en el eje de las ordenadas, desplazarse horizontalmente hasta interceptar la curva correspondiente a $\frac{v}{V}$. En el punto de intercepción, bajar hacia el eje de las abscisas, encontrándose así la relación buscada.

8) Calcular la velocidad trabajando la sección parcialmente llena circulando el gasto máximo:

$$v_{q_v \max} = \left(\frac{v}{V}\right) \cdot V_{q_v \max}$$

Si $v_{q_v \max} \le v_{q_v \max permisible}$ seguir al paso siguiente.

Si $v_{q_v \max} > v_{q_v \max permisible}$ regresar al paso 1.

9) Calcular la profundidad normal para el gasto mínimo y la velocidad correspondiente.

Si $v_{q_v \min} \ge v_{q_v \min axpermisible}$ concluye el diseño.

Si $v_{q_v \min} \ll v_{q_v \min permisible}$ regresar al paso 1.

Caso II

Se conoce: y, q_v , D, n

Se desea determinar: S

- 1) Calcular A y R.
 - 2) Calcular y/D.
 - 3) Obtener q_v/Q_{v} .

Entrar con y/D y leer el valor de la relación q_v/Q_v en el eje de las abscisas luego de interceptar la curva q_v/Q_v .

4) Calcular Q_{ν}

$$Q_{v} = \begin{pmatrix} q_{v} \\ \hline q_{v} / Q_{v} \end{pmatrix}$$

5) Cálculo de S.

$$S = \frac{n \cdot Q}{A \cdot R^{2/3}}$$

Caso III

Se conoce: D, n, S, y

Se desea determinar: q_v y v

- 1. Calcular A y R.
- 2. Calcular Q_v y V.
- 3. Calcular *y/D*.

- 4. Con y/D entrar al gráfico y obtener q_v/Qv y v/V.
- 5. Calcular el caudal y la velocidad trabajando parcialmente llena:

$$q_{v} = \left(\frac{q_{v}}{Q_{v}}\right) \cdot Q_{v} \quad ; \quad v_{v} = \left(\frac{v}{V}\right) \cdot V$$

Caso IV

Se conoce: q_v , D, n, S

Se desea determinar: v e y

1. Calcular A y R.

2. Calcular $V y Q_{v}$.

3. Calcular q_{ν}/Q_{ν} , y con el valor obtenido entrar al gráfico para obtener y/D y ν/V .

4. Calcular (*y*) y (*v*):

$$y = \left(\frac{y}{D}\right) \cdot D$$
 ; $v = \left(\frac{v}{V}\right) \cdot V$

El calado (y) puede obtenerse directamente aplicando el método de Newton-Raphson.

$$y_{1} = y_{o} - \frac{\frac{q_{v}}{S^{1/2}} \cdot \left[\frac{D^{2}}{8} \cdot (\theta - sen\theta)\right]_{y_{o}} \left[\frac{D}{4} \cdot \left(1 - \frac{sen\theta}{\theta}\right)\right]_{y_{o}}^{2/3}}{\left[\frac{4 \cdot (2 \cdot sen\theta + 3 \cdot \theta - 5 \cdot \theta \cdot \cos\theta)}{3 \cdot D \cdot \theta \cdot (\theta - sen\theta) \cdot sen(\theta/2)}\right]_{y_{o}}}$$

Este método requiere de un proceso iterativo, hasta logar que la profundidad fijada y_o coincida con la profundidad calculada (y_I). En el momento que se logra la igualdad, se ha encontrado la profundidad de calado real. (Pérez Franco, 1983)

A continuación, se brindan los valores del coeficiente de rugosidad de Manning que presentan diferentes fuentes bibliográficas para conductos cerrados (**Tablas 23**, **24**, **25** y **26**).

59

6.2. TORMENTA DE DISEÑO.

Según Marco (2001) el espesor de agua precipitable en una nube es limitado y la intensidad de la lluvia es una función directa del espesor de la nube. Pero dada la estructura vertical de la nube, si el suministro de aire húmedo se mantiene la precipitación es continua. También es bueno conocer las celdas convectivas o núcleo de alta intensidad de lluvia. Su extensión típica es de $30 \, km^2$ y pueden producir intensidades del orden de $100 \, mm/hora$. Estas celdas convectivas no suelen estar solas, sino que forman agrupamientos o cluster de (3-5) celdas con una distancia entre sí de 10- $15 \, km$. Estas celdas se originan en lugares preferentes y se mueven según ciertas rutas, si se llegaran a detener sería una catástrofe mayor.

Esta estructura espacio temporal de la lluvia tiene consecuencias inmediatas. Por debajo de los $50 \, km^2$ existe una probabilidad importante de que una celda afecte una cuenca hidrológica completa. Este es el límite de lo que se entiende por una cuenca pequeña, en este caso la lluvia se toma como homogénea. Esta estructura de celdas convectivas en una cuenca pequeña condiciona la forma de las curvas IFD que relacionan la intensidad, la frecuencia y la duración de la lluvia. Las cuencas entre $50-500 \, km^2$ se denominan cuencas medias y en ellas la precipitación no se puede tomar como uniforme en el tiempo. Siendo necesario describirla con un hietograma.

6.2.1. Parámetros de la tormenta de diseño

Según el tipo de proyecto a construir, los métodos de cálculo de gastos máximos a utilizar y la disponibilidad de datos meteorológicos existentes en la zona de estudio, los parámetros más utilizados de la tormenta de diseño son (González, 2000):

- ✓ La intensidad máxima para un periodo de retorno dado.
- ✓ El hietograma para el periodo de retorno de diseño.
- ✓ La precipitación máxima probable.

Los dos primeros parámetros se definen a partir de las *curvas de intensidad-frecuencia- duración* (gráficamente o por ecuaciones matemáticas), y son las que resultan de interés para la ingeniería civil.

La lluvia es definida por tres variables: magnitud o lámina, duración y frecuencia. La *magnitud* que es la lámina total ocurrida en su duración, su *intensidad* que es la lámina entre su duración y la *frecuencia* que es expresada por su periodo de retorno. Las características de las tormentas de una zona o región, con respecto a sus variables, se pueden representar mediante gráficas llamadas: curvas intensidad-frecuencia-duración (*IFD*), hietogramas para una frecuencia o periodo de retorno dado y curvas precipitación-frecuencia-duración (*PFD*). Las técnicas utilizadas para obtener estas relaciones dependen de la información disponible.

6.2.1.1. Intensidad máxima para un periodo de retorno dado a partir de curvas IFD

Las *curvas IFD* relacionan las intensidades máximas de la lluvia con su duración y periodo de retorno, reflejando la variación de las características de la intensidad con respecto a su frecuencia de incidencia y a su duración. En estas se representan curvas correspondientes a diferentes periodos de retorno como son: 2, 5, 10, 50, 100 y 1000 años (**Figura 52**).

Estas curvas, que relacionan la intensidad con la duración de la lluvia o tormenta de diseño, corresponden a un área o cuenca ubicada dentro de la zona que abarca el pluviógrafo.

El procedimiento de trabajo con las curvas es sencillo:

- 1. Escoger la curva de trabajo: se determina la probabilidad de diseño o comprobación para la protección contra inundaciones de avenidas en las obras, de acuerdo al tipo (instalaciones industriales, fabriles o civiles; obras viales; poblaciones; obras hidrotécnicas y áreas de cultivos y drenaje) y categorías (I, II, III y IV) de las obras. La probabilidad de diseño (p) así escogida se transforma a periodo de retorno (Tr), conociendo que la probabilidad (en %) es el inverso del periodo de retorno multiplicado por 100.
- 2. Determinar la duración de la lluvia o tormenta de diseño.
- 3. Determinar la intensidad. La determinación de la intensidad se realiza con el trabajo sobre el gráfico de la curva seleccionada, entrando con el valor de la duración de la lluvia (min) verticalmente hasta tocar dicha curva y trazando una recta horizontal hacia la izquierda, hasta lograr el valor de la intensidad (mm/min). También se puede aplicar el procedimiento matemático, con mayor nivel de exactitud, utilizando la fórmula que define a las curvas.
- 4. Pero no todas las zonas del territorio nacional, correspondientes a la red pluviográfica, tienen confeccionadas las *curvas IFD*, lo que puede imposibilitar la determinación de las intensidades a través de dichas curvas. En estos casos, se utiliza el *Nomograma para el cálculo de la intensidad de la lluvia de diferentes probabilidades y duraciones para cualquier punto que por ejemplo en Latinoamérica* (**Figura 53**), que se corresponde con el Anexo C de la NC 48-26 (CEN, 1984a).

El procedimiento de trabajo con las curvas del Nomograma es el siguiente:

5. Escoger la recta de trabajo: de acuerdo con la NC 48-31 (CEN, 1984c), en el caso de la Latinoamérica, se determina la probabilidad de diseño o comprobación para la protección contra inundaciones de avenidas en las obras, de acuerdo al tipo (instalaciones industriales,

fabriles o civiles; obras viales; poblaciones; obras hidrotécnicas y áreas de cultivos y drenaje) y categorías (I, II, III y IV) de las obras.

- 6. Determinar la duración de la lluvia o tormenta de diseño.
- 7. Determinación de la curva isoyeta de trabajo: para ello se requiere contar con la última edición del Mapa de las curvas isoyetas para láminas de lluvias del 1% de probabilidad (Rodríguez, 2005),. Con las coordenadas del cierre de la cuenca o área en estudio se determina la isoyeta correspondiente para los cálculos (H 1%).
- 8. Determinación de la intensidad: Se realiza de manera gráfica. Se entra con el valor (mm) de la curva isoyeta (H 1%) y se traza una vertical hasta tocar la recta a la probabilidad de diseño, y desde este intercepto se traza otra recta horizontal hacia la izquierda hasta interceptar la recta correspondiente al tiempo de duración de la tormenta (min), y, por último, se logra el valor de la intensidad (mm/min) mediante el trazado de otra línea vertical. Este procedimiento se muestra en la **Figura 54**.

6.3. HIETOGRAMA PARA EL PERIODO DE RETORNO DE DISEÑO.

Para los modelos hidrológicos de gastos máximos es necesario estimar la forma del hietograma de la tormenta de diseño. El hietograma de una tormenta es la gráfica que representa la distribución de la lámina o intensidad de lluvia en el tiempo o duración de la tormenta. González (2000), partiendo de un análisis de la distribución temporal de numerosas tormentas realizadas por otros investigadores, resume, sobre su comportamiento general, los siguientes aspectos:

- ✓ Se producen variaciones muy importantes de unos episodios lluviosos a otros.
- ✓ Las variaciones en la distribución temporal son sensiblemente mayores que las existentes respecto a la duración, el periodo de retorno y el tamaño de la tormenta.
- ✓ No existen importantes diferencias entre los resultados puntuales y areales.

Todo ello conduce a que sea habitual considerar una determinada forma del hietograma que se modifica según la magnitud de la lluvia. El hietograma de una tormenta real es una trasformación de una curva de masa, en la que se divide en intervalos de tiempo. Sin embargo, el hietograma de diseño para un periodo de retorno es el estimado por el análisis estadístico de diversos hietogramas de aguaceros reales, expresados en forma adimensional, o por las curvas IFD, definiendo un intervalo de tiempo para la variación de las intensidades y una duración total para la tormenta.

Como se considera que el método estadístico sólo es adecuado cuando se utiliza en el análisis de tormentas en el área de la zona de estudio, pues resulta difícil de extrapolar a otras regiones, se recomienda obtener el hietograma por las *curvas IFD* que se hayan confeccionado para la región considerada.

Para obtener el hietograma de una probabilidad o periodo de retorno dado se define el intervalo de tiempo Δt para considerar la variación de las intensidades, el tiempo total Dt de la tormenta y el tiempo de retorno de diseño Tr, y se procede de la siguiente forma:

1. Se determina el número de intervalos *Ni* a definir, mediante la expresión:

$$N_i = \frac{D_t}{\Delta_t} \tag{6.11}$$

- 2. Se estima, para cada tiempo final t_i de cada intervalo i, la $Imax_i$ en la $curva\ IFD$ correspondiente al Tr de diseño; o se calcula según la expresión correspondiente.
- 3. Se calcula la lámina total para cada intervalo Lt_i , por la expresión:

$$Lt_i = \operatorname{Im} ax_i \cdot t_i$$
 (t_i expresado en horas) (6.12)

4. Se calcula la lámina de cada intervalo L_i , mediante la expresión:

$$L_{i} = Lt_{i} - Lt_{i-1} (6.13)$$

5. Se calcula la intensidad de cada intervalo I_i , por la expresión:

$$I_i = \frac{L_i}{\Delta t}$$
 (\Delta t expresado en horas) (6.14)

Debido al proceso de cálculo descrito, el hietograma tendrá una variación decreciente.

Ahora bien, González (2000) recomienda, para adecuar a la realidad este hietograma, reorganizar estas intensidades, de forma tal que sigan patrones semejantes al comportamiento de la lluvia en la zona,

6.3.1. Avenida de diseño

Sobre el cálculo del *escurrimiento*, *caudal o gasto máximo*, Fundora (1989) expresa que es una de las tareas más complicadas y de mayor responsabilidad de la Hidrología. El cálculo de sus valores de diseño por exceso conduce a costos injustificados de las obras, por el contrario, los valores calculados por defecto ponen bajo peligro de destrucción a las mismas. En cuanto a esto, Heras (1979) plantea

que el fenómeno de máxima crecida es muy complejo y depende de muchas variables, cuya probabilidad de coincidencia caracteriza el riesgo. (M., 1986):

- ✓ El hecho real de la existencia de eventos hidrometeorológicos extraordinarios por la situación geográfica del país.
- ✓ Las limitaciones que presenta el uso correcto de los métodos matemático-estadísticos.
- ✓ La vigencia de normas y regulaciones de proyecto que obligan a dar valores de cálculo, en la argumentación de proyectos, para distintas probabilidades de sobrepaso.
- ✓ La seguridad de la estructura de drenaje proyectada.

En nuestro país existen un gran número de cuencas sin estaciones hidrométricas, es decir, no tienen datos de escurrimiento máximo. Otras presentan datos faltantes que deben ser reconstruidos. Por ello, de acuerdo a la disponibilidad de datos, o carencia de ellos, se han desarrollado diferentes tipos de métodos para el cálculo del escurrimiento máximo. Estos métodos se indican a continuación:

- Métodos estadísticos.
- Métodos hidrológicos.
- Fórmulas y métodos empíricos.
- Método hidráulico de huellas máximas.
- Curva envolvente de los gastos máximos (Q_{max}).

Cuando existen datos sobre el régimen hídrico de la corriente superficial investigada, o sea, existe una estación hidrométrica, siempre se pueden procesar los *gastos máximos observados* mediante los *métodos estadísticos*, y pueden ser procesados o no los *hidrogramas observados* mediante los *métodos hidrológicos*.

Cuando no existen datos sobre el régimen hídrico de la corriente superficial investigada, caso muy común que se le presenta al ingeniero civil en la determinación de la avenida de diseño, puede procesarse la *tormenta de diseño* para aplicarse los *métodos empíricos* y los *métodos hidrológicos*.

Independientemente de la existencia o no de datos sobre el régimen hídrico de la corriente superficial investigada, pueden aplicarse otros métodos, a partir de las características (geomorfología) de la cuenca, como son el *método hidráulico de huellas máximas* y la *curva envolvente de los gastos máximos* (Q_{max}).

Por todo ello, resultan de interés para el ingeniero civil, en la determinación de la avenida de diseño, los siguientes:

- Fórmulas y métodos empíricos.
- Método hidráulico de huellas máximas.
- Curva envolvente de los gastos máximos (Q_{max}).
- Métodos hidrológicos.

6.3.2. Fórmulas y métodos empíricos

La ausencia de observaciones de larga duración en numerosos ríos ha contribuido a la elaboración de numerosas fórmulas para el cálculo de los caudales máximos probables, según las características esenciales de la cuenca. Estas fórmulas están basadas en el análisis de datos recogidos por los especialistas en cuencas bien estudiadas; en estas se incluyen uno o varios coeficientes representativos de las características de la cuenca de drenaje. Estos métodos y fórmulas tienen como principal ventaja la facilidad de cálculo y su limitación es consecuencia, fundamentalmente, de que los parámetros de las fórmulas han sido deducidos para cuencas específicas o para toda una región o país.

Ya hace más de cuatro décadas Wisler (1966) precisaba que el uso de fórmulas empíricas debe estar precedido de una investigación sobre su origen, de una familiarización con los datos en que se fundamentan, de un conocimiento de las condiciones bajo las que se intenta hacer uso de ellas y de las áreas a las que se aplican, así como, comprender las limitaciones que el uso de tales fórmulas han hecho sus autores. En la actualidad existen una gran variedad de métodos y fórmulas empíricas, muchas de las cuales son descritas por Heras (1979) y Fundora (1989), pero el principal problema es la aplicación correcta de estas.

Como principales inconvenientes en su aplicación pueden mencionarse:

- ✓ El gasto máximo obtenido no está bien relacionado con su probabilidad de ocurrencia, pues algunos de estos métodos suponen que la probabilidad de ocurrencia del gasto corresponde a la probabilidad de ocurrencia de la lluvia.
- ✓ Son métodos muy simples, por lo general, para representar todos los factores que influyan en la formación de la crecida.
- ✓ Necesitan de una buena selección de los coeficientes que intervienen en la fórmula.
- ✓ En algunos casos hay que corregir los coeficientes, ajustándolos a los valores reales de la cuenca, a partir de algún dato puntual conocido.
- ✓ No se conocen, en algunos de ellos, los intervalos de variación de la superficie de la cuenca en los que son aplicables.

✓ No se conocen, en algunos de ellos, las condiciones en que han surgido y por ende las limitaciones particulares para su aplicación.

Teniendo en cuenta estos inconvenientes se proponen los siguientes métodos empíricos, los que se clasifican en:

- 1. Métodos empíricos que estiman el Q_{max} en función de las características de la cuenca y los datos de lluvias:
 - Fórmula racional.
- 2. Métodos empíricos que estiman el Q_{max} en función de las características de la cuenca:
 - Fórmulas regionales.

6.3.3. Fórmula Racional

Wisler (1966) confirma que la fórmula racional es una de las más viejas y conocidas que ha sido utilizada en el diseño de conductos de aguas pluviales. La expresión de esta fórmula ha sufrido cambios en dependencia de las unidades de medida en que se han expresado sus términos.:

$$Q_P = 166,67 \cdot C \cdot I_P \cdot A \tag{6.15a}$$

donde:

C: coeficiente de escurrimiento (*adimensional*).

 I_P : intensidad de la precipitación, para la probabilidad dada (mm/min).

A: área de la cuenca (Ha).

 Q_P : gasto o caudal para la probabilidad dada (l/s).

Otras expresiones muy utilizadas de la fórmula son:

$$Q_p = 16,67 \cdot C \cdot I_p \cdot A \tag{6.15b}$$

donde:

 I_P : intensidad de la precipitación, para la probabilidad dada (mm/min).

A: área de la cuenca (km^2) .

 Q_P : gasto o caudal para la probabilidad dada (m^3/s) .

$$Q_p = \frac{C \cdot I_p \cdot A}{3.6} \tag{6.16c}$$

donde:

 I_P : intensidad de la precipitación, para la probabilidad dada (mm/h).

A: área de la cuenca (km^2) .

 Q_P : gasto o caudal para la probabilidad dada (m^3/s) .

Varios autores recomiendan su utilización en pequeñas cuencas con áreas menores a los 25 km^2 . En la práctica, según estudios realizados, se asume su utilización en cuencas con áreas menores a los 60 km^2 , en correspondencia con el límite considerado internacionalmente para cuencas pequeñas (50 km^2).

A la Fórmula Racional se le señalan las siguientes **limitaciones**:

- **1.** Consideración de una *lluvia de intensidad uniforme* para toda la cuenca durante un tiempo igual al tiempo de concentración.
- 2. Se asume que todos los puntos de la cuenca están contribuyendo a la vez.
- **3.** No se toma en cuenta el efecto de *almacenamiento superficial*, lo cual puede conducir a errores de cierta importancia en áreas muy llanas.

A estas se *limitaciones* se pueden agregar las siguientes:

4. El *coeficiente de escurrimiento* se estima, no se calcula.

Por lo general, las cuencas pequeñas, que se estudian para el drenaje vial en áreas rurales y urbanas, no cuentan con estaciones hidrométricas que proporcionen datos sobre los volúmenes escurridos, cuyos porcentajes en relación con los volúmenes caídos permitan calcular dichos coeficientes de escurrimiento. La estimación del coeficiente de escurrimiento C, a partir de las características del área a drenar, introduce factores subjetivos en el cálculo del gasto, por lo que el buen juicio del ingeniero desempeña un papel fundamental. Además, existen innumerables tablas para su estimación.

5. El procedimiento utilizado para determinar la intensidad de la lluvia.

La mayor precisión en su determinación se obtiene utilizando las *curvas IFD* de la zona donde se ubica la cuenca o área de drenaje; pero estas curvas, no obstante, su utilidad práctica, no han sido obtenidas para todas las zonas correspondientes a los pluviógrafos ubicados en todo el territorio nacional. Si estas curvas no existen, y no pueden ser elaboradas, se debe utilizar el *Nomograma*

para el cálculo de la intensidad de la lluvia de diferentes probabilidades y duración para cualquier punto de la Latinoamérica, que se encuentra en la norma.

6. Las fórmulas utilizadas para calcular el tiempo de concentración. Se han utilizado, y se utilizan, diferentes fórmulas para calcular el tiempo de concentración (tiempo que transcurre desde el comienzo del exceso de precipitación hasta el momento en que toda el área de la cuenca contribuye con el caudal en el punto de cierre de cálculo). Pérez M. (1985a) ha desarrollado un estudio de los tiempos característicos de la cuenca (tiempo de concentración, tiempo de subida o hasta el pico y tiempo de retardo), y en cuanto al cálculo del tiempo de concentración recomienda, para cuencas sin datos de observaciones, la utilización de dos fórmulas muy conocidas: la de Ramser-Kirpich y la de California (ambas se describen en el acápite tiempo de concentración). Estas fórmulas sólo calculan el tiempo de concentración por el cauce (el otro es el tiempo de concentración por las laderas). En un estudio realizado por Villamil (1988) se concluye que las fórmulas de Ramser-Kirpich y de California ofrecen resultados no confiables en las cuencas con áreas mayores a los 50-60 km², existiendo una tendencia a mejorar para valores menores a dicho límite, , en cuencas menores de 22 km².

Las limitaciones anteriores no son significativas en el estudio del *drenaje pluvial de las cubiertas de las edificaciones*. En este caso la *Fórmula Racional* se puede expresar de dos formas:

✓

$$Q_P = 0.0167 \cdot C \cdot I_P \cdot A \tag{6.17a}$$

donde:

C: coeficiente de escurrimiento (*adimensional*).

 I_P : intensidad de la precipitación, para la probabilidad dada (mm/min).

A: área tributaria de un bajante pluvial (m^2) .

 Q_P : gasto o caudal para la probabilidad dada (l/s).

$$Q_p = \frac{C \cdot I_p \cdot A}{3600} \tag{6.17b}$$

donde:

 I_P : intensidad de la precipitación, para la probabilidad dada (mm/h).

A: área tributaria de un bajante pluvial (m^2) .

 Q_P : gasto o caudal para la probabilidad dada (l/s).

En el estudio del drenaje pluvial de la cubierta de las edificaciones se debe observar lo siguiente:

- La intensidad de la lluvia a utilizar se obtendrá del estudio hidrológico de la zona donde se va a ejecutar la obra.
- El coeficiente de escurrimiento se tomará, según el tipo de superficie.

6.3.3.1. Parámetros de la Fórmula Racional

Para aplicar la *Fórmula Racional*, en la estimación de la *avenida de diseño*, se requiere inicialmente calcular, o estimar, los parámetros que la integran.

• Coeficiente de escurrimiento

El coeficiente de escurrimiento es un valor adimensional que establece la relación fija entre la tasa de lluvia para la cuenca de drenaje y el escurrimiento superficial y subsuperficial, depende de las características y condiciones de la cobertura del suelo, de la intensidad de la lluvia, proximidad del nivel freático, el grado de compactación del suelo, entre otras.

Como ya se expresó, las cuencas pequeñas y medianas, que se estudian por el ingeniero civil, por lo general no cuentan con estaciones hidrométricas que proporcionen datos sobre los volúmenes escurridos, cuyos porcentajes en relación con los volúmenes caídos permitan calcular dichos coeficientes de escurrimiento; por lo que la estimación de C, a partir de las características del área a drenar, introduce factores subjetivos en el cálculo del gasto. Por ello, el buen juicio del ingeniero desempeña un papel fundamental.

Son de interés para el ingeniero civil dos procedimientos para la estimación del coeficiente de escurrimiento:

- 1. Mediante el uso de tablas confeccionadas al efecto.
- 2. Aplicando el método del Número de Curva (NC) de escurrimiento.

Uso de tablas

Existen innumerables tablas para la estimación del escurrimiento, en función de los diversos factores que lo afectan. De ellas, se presenta una selección en función de los factores involucrados y el nivel

de aceptación de diversos autores; como es el caso de los valores de *C* recogidos en la **Tabla 27**, para cuencas urbanizadas o por urbanizar, y recomendados por Dorticós (1984) y González (2000).

Cuando no se posea, para las zonas urbanizadas o por urbanizar, la información pormenorizada de los tipos de superficie del área o cuenca en estudio, se orienta determinar el valor del coeficiente de escurrimiento C en función del valor del coeficiente de evaluación M.

Este valor de **M** se determina mediante la **Tabla 28**, en la que están relacionados cuatro de los diversos factores que influyen en el escurrimiento superficial producto de la lluvia; estos factores son: el relieve del terreno (pendiente media de la cuenca), la permeabilidad del suelo (tipo de suelo), la vegetación (uso del suelo) y la capacidad de almacenamiento de agua (almacenamiento superficial). La **Tabla 28** se corresponde con la propuesta realizada por la Instrucción de Carreteras de las Normas Españolas (MOP, 1965).

El valor del coeficiente **M** resulta de la suma de los valores correspondientes a la evaluación (cuantitativa o cualitativa) de cada uno de los cuatro factores considerados que influyen en el escurrimiento superficial: pendiente media de la cuenca, tipo de suelo, uso del suelo y almacenamiento superficial. Este valor podrá estar comprendido entre un valor máximo de **100** y un valor mínimo de **25**. Ya calculado el coeficiente **M**, el valor del coeficiente de escurrimiento *C* se determina mediante la **Tabla 29**, aplicando un procedimiento de interpolación lineal.

La **Tabla 29** se corresponde con la propuesta realizada por la Instrucción de Carreteras de las Normas Españolas (MOP, 1965).

La **Tabla 30** Regula los valores del coeficiente de escurrimiento *C* para cuencas no afectadas por el crecimiento urbano. Estos valores son recomendados por Fundora (1989) y González (2000).

Cuando los factores que afectan el escurrimiento de una cuenca varían dentro de ella, de un área parcial a otra, de tal manera que el coeficiente de escurrimiento C asumido para cada una de estas áreas parciales, son significativamente diferentes; el coeficiente C correspondiente a toda la cuenca se calcula según la expresión de la media aritmética ponderada:

$$C = \frac{\sum_{i=1}^{k} C_i A_i}{\sum_{i=1}^{k} A_i}$$
 (6.18)

Comprobándose la igualdad:

$$Ac = \sum_{i=1}^{k} A_i \tag{6.18a}$$

siendo:

 A_i : Área parcial *i*, en Ha o km^2 .

 C_i : coeficiente de escurrimiento para el área parcial i.

k: cantidad de áreas o zonas parciales en que se divide el área de la cuenca en estudio.

Ac: área de toda la cuenca (hallada con anterioridad), en Ha o km^2 .

La Tabla 31 Regula los valores del coeficiente de escurrimiento C de acuerdo con el tipo de material utilizado en la terminación de las cubiertas de las edificaciones.

Método del Número de Curva de escurrimiento

El Servicio de Conservación de Recursos Naturales (NRCS) de los Estados Unidos de Norteamérica desarrolló un método donde el Número de Curva (CN), que es una combinación específica del tipo de suelo, uso del terreno y su tratamiento, permite determinar el coeficiente de escurrimiento. En este método se admite la existencia de un valor límite de escorrentía (I_a), por debajo del cual las precipitaciones no provocan escurrimiento y, físicamente, representa la detención inicial.

El valor I_a se corresponde con las pérdidas antes que empiece el escurrimiento. Incluye las aguas retenidas en la superficie de las depresiones, aguas interceptadas por la vegetación, la evaporación e infiltración. Por tanto, I_a es igual a la precipitación que ocurre antes de que comience el escurrimiento.

La ecuación de escurrimiento directo, expresando todos los parámetros en pulgadas, plantea (USDA, 1986) y (FHWA, 2002):

$$E = \frac{(P - I_a)^2}{(P - I_a) + S} \tag{6.19}$$

donde:

E: escurrimiento directo.

P: precipitación de la tormenta.

 I_a : interceptación inicial.

S: retención máxima potencial después que empieza el escurrimiento o diferencia potencial máxima entre P y E.

A través del estudio de muchas cuencas, grandes y pequeñas, en varias partes de los Estados Unidos de Norteamérica, se encontró la siguiente ecuación empírica:

$$I_a = 0.2 \cdot S \tag{6.20}$$

Sustituyendo la ecuación (6.20) en (6.19) se obtiene la ecuación de escurrimiento en función de la lámina de la lluvia y la retención máxima potencial:

$$E = \frac{(P - 0.2 \cdot S)^2}{P + 0.8 \cdot S} \tag{6.21}$$

Por medio de la solución de la ecuación (6.21) se obtienen las curvas de la **Figura 57**. Cuando la precipitación supera la interceptación inicial, se inicia el escurrimiento. A medida que aumenta P crece también E y la curva (E vs. P) se aproxima asintóticamente a la línea que forma un ángulo de 45° con el eje de las abscisas. En cada punto, la diferencia entre precipitación y escurrimiento es igual a la cantidad de lluvia retenida por la cuenca, cuyo valor máximo posible se denomina *máxima* retención potencial (S). Para esta situación, el escurrimiento directo potencial es mínimo para una precipitación dada, y como el *coeficiente de escurrimiento C* se define como la relación:

$$C = \frac{E}{P} \tag{6.22}$$

Entonces el coeficiente de escurrimiento potencial es también mínimo.

Conociendo el número de la curva de escurrimiento (CN) y la lámina de lluvia (P) se puede determinar en la **Figura 57** el escurrimiento directo (E), y con ellos el valor del coeficiente de escurrimiento máximo (C), según la expresión (6.22).

De acuerdo a las unidades de medida en que se expresen E y P, así será la relación entre el número de la curva de escurrimiento CN y la máxima retención potencial S (FHWA, 2002):

✓ Si se expresan en pulgadas:

$$S = \frac{1000}{CN} - 10\tag{6.23a}$$

✓ Si se expresan en milímetros:

$$S = 25,4 \cdot \left[\frac{1000}{CN} - 10 \right] \tag{6.23b}$$

En la **Figura 57** el valor mayor de *CN* es 100, y sustituyendo este valor en la ecuación (6.23a) resulta que *S* igual a cero, o sea, no existe retención superficial, todo lo que precipita escurre.

Ahora bien, los valores de *CN* se encuentran tabulados en función de los grupos hidrológicos de los suelos (que son cuatro), tipos de cubierta y condiciones hidrológicas. En la **Tabla 32** se presenta, a manera de ilustración, una de dichas tablas.

Estos cuatros *grupos hidrológicos* quedan definidos de la forma siguiente:

<u>Grupo A</u>: son suelos que tienen bajo potencial de escurrimiento y alta tasa de infiltración. Lo constituyen principalmente arenas excesivamente permeables.

<u>Grupo B</u>: suelos arenosos, superficiales y suelos de textura media, con tasas de infiltración mayores al promedio.

<u>Grupo C</u>: son suelos que tienen la tasa de infiltración baja cuando están completamente mojados. Consisten principalmente en suelos con una textura fina, con capas que impiden los movimientos descendentes del agua.

<u>Grupo D</u>: estos suelos tienen un alto potencial de escurrimiento y una tasa de infiltración muy baja cuando están completamente mojados. Están conformados, principalmente, por arcillas, con un hinchamiento y un manto freático alto.

El concepto de *Número de Curva* para el análisis del escurrimiento es muy utilizado a nivel mundial, por ello se encuentra desarrollado y ejemplificado por los autores en el texto, aún inédito, "Hidrología Aplicada a la Ingeniería Civil".

Tiempo de concentración de la cuenca

El tiempo de concentración es el tiempo transcurrido desde que una gota de agua cae en el punto más alejado de la cuenca hasta que llega a la salida o cierre de esta. González (2000) plantea que son cuatro las fórmulas más conocidas para calcular el tiempo de concentración t_c , expresado en minutos. A continuación, se brindan tres de ellas:

✓ Fórmula de Ramser-Kirpich:

$$t_c = 4 \cdot \left(\frac{Lr}{\sqrt{Yr}}\right)^{0.77} \tag{6.24}$$

donde:

Lr: longitud del río principal (*km*).

Yr: pendiente media (bruta) del río (m/m).

✓ Fórmula de Ven Te Chow:

$$t_c = 25.2 \cdot \left(\frac{Lr}{\sqrt{Yps}}\right)^{0.64} \tag{6.25}$$

donde:

Lr: longitud del río principal (*km*).

Yps: pendiente por el perfil suavizado del río (%).

✓ Fórmula de California:

$$t_c = 58 \cdot \left(\frac{Lr^3}{\Delta H}\right)^{0.385} \tag{6.26}$$

donde:

Lr: longitud del río principal (*km*).

 ΔH : desnivel del río desde el nacimiento hasta el cierre de cálculo (m).

Ahora bien, la NC 48-26 (1984a) regula lo siguiente:

✓ En zonas no urbanizadas, el uso de la fórmula:

$$t_c = 0.02 \cdot \left(\frac{L^3}{\Delta H}\right)^{0.0385} \tag{6.27}$$

donde:

L: longitud de la corriente predominante (m).

 ΔH : desnivel de la corriente predominante desde el nacimiento hasta el cierre (m).

Y agrega, que el desnivel de la corriente predominante puede ser determinado por tramos, según sus tendencias topográficas.

✓ En zonas urbanizadas, el uso del Nomograma de la **Figura 58**:

Este se corresponde con el *Nomograma para determinación del tiempo de concentración en zonas urbanizadas* del Anexo B de la citada norma, el cual solamente se utiliza hasta el conducto de drenaje, por lo que realmente se conoce como *tiempo de entrada* (t_e) al sistema de drenaje

El *tiempo de entrada* se determina trazando una recta que una el valor de la longitud máxima, en *m*, recorrida por el agua, en el sentido de la pendiente, dentro de la subcuenca que drena al sistema de drenaje, a través de tragantes, con el tipo de terreno por donde drena el agua; esta recta se prolonga hasta interceptar la línea auxiliar, a partir de cuya intercepción se traza otra recta que pase por el valor de la pendiente del terreno considerada, en %, hasta determinar el tiempo de concentración, en *min*, correspondiente a dicha subcuenca que drena hasta el sistema de drenaje, el cual es realmente el *tiempo de entrada* al mismo, y es uno de los dos componentes del tiempo de concentración.

El otro componente del tiempo de concentración de la cuenca que drena a un sistema de drenaje en zona urbana es el tiempo de recorrido (t_r) del agua por los conductos de drenaje. El tiempo de recorrido, en min, en cada tramo del conducto de drenaje se determina por:

$$t_r = \frac{L_t}{60 \cdot v_r} \tag{6.28}$$

donde:

Lt: longitud del tramo del conducto de drenaje, en m.

vi: velocidad del agua en el tramo del conducto de drenaje, en m/s.

Por lo que por cada conducto de drenaje el tiempo de concentración, en min, hasta cada sección considerada dentro del conducto se determina por:

$$t_c = t_e + \sum_{i=1}^{n} t_{ri}$$
 (6.29)

donde:

t_e: tiempo de entrada al conducto, en min. Hallado por el nomograma de la Figura 58

t_{ri}: tiempo de recorrido por cada tramo i del conducto, en min. Calculado aplicando (6.28).

n: total de tramos comprendidos hasta la sección considerada dentro del conducto.

En un *sistema de drenaje ramificado*, para un punto del conducto considerado en el análisis, en diseño o revisión, puede obtenerse más de un tiempo de concentración, según la ramificación del sistema hasta el conducto. En este se orienta tomar el mayor valor de todos, para garantizar que el flujo total de las subcuencas concurrentes se determine con el menor valor de intensidad de la lluvia, para un mínimo costo. Pero, el análisis y selección de este tiempo amerita un estudio más detallado, que está fuera del alcance del presente texto. Los autores lo abordan y ejemplifican en el texto, aún inédito, "Drenaje Vial. Principios y métodos de diseño".

Duración de la lluvia

En zonas no urbanizadas la duración de la lluvia a la probabilidad de diseño (t_d) se obtiene igualándola al menor tiempo de concentración obtenido por una de las tres fórmulas ya descritas: Ramser-Kirpich, Ven Te Chow y California. A esta duración de la lluvia asumida es que está asociada la mayor intensidad de la lluvia, para una probabilidad o periodo de retorno dado. Como ya se expresó, se considera una lluvia de intensidad uniforme para toda la cuenca y se asume que todos los puntos de la cuenca están contribuyendo a la vez. Como no se toma en cuenta el efecto del almacenamiento superficial, esto puede conducir a errores de cierta importancia en áreas muy llanas.

En zonas urbanizadas, el análisis de los tiempos de concentración es diferente, ya que en el caso anterior es una cuenca, o sea una sola área que drena a un punto, a la cual se le calcula el tiempo de concentración por diferentes fórmulas; sin embargo, en este caso, diferentes subcuencas con diferentes tiempos de concentración, calculados según (6.29), pueden drenar hacia uno o más puntos considerados en los conductos de drenaje.

En estas zonas, para cumplir la premisa en la que se asume que todos los puntos de la cuenca están contribuyendo a la vez, se debe escoger el mayor tiempo de concentración, de cada uno de los calculados para las diferentes subcuencas que tributan al punto considerado del conducto de drenaje, para hacerlo coincidir con el tiempo de duración de la lluvia a la probabilidad de diseño, lo que determina el menor valor de intensidad de la lluvia.

Intensidad de la lluvia de una probabilidad dada

El valor de intensidad de la lluvia de una probabilidad dada puede obtenerse de acuerdo a uno de los dos procedimientos descritos en el epígrafe 2.4.2:

- 1. Mediante las curvas IFD correspondientes a la cuenca en estudio.
- 2. Utilizando el Nomograma para el cálculo de la intensidad de la lluvia de diferentes probabilidades y duraciones.
- Probabilidades de diseño

Al comienzo del Capítulo se definieron como: *período de retorno de una avenida* al intervalo de tiempo dentro del cual un evento considerado como avenida o crecida máxima puede ser igualado o excedido, por lo menos una vez, en el período; y *avenida o crecida de diseño* a la avenida o crecida correspondiente a un periodo de retorno determinado, de acuerdo a normas nacionales e internacionales.

La *probabilidad de ocurrencia* de un evento, identificada como *p*, es el inverso del *periodo de retorno* de dicho evento, identificado como *Tr*, por lo que se relacionan de las formas:

$$p = \frac{1}{Tr} \tag{6.30a}$$

donde:

p: probabilidad de ocurrencia (adimensional).

Tr: periodo de retorno (años).

$$p = \frac{1}{T_r} \cdot 100 \tag{6.30b}$$

donde:

p: probabilidad de ocurrencia (%).

Tr: periodo de retorno (*años*).

La probabilidad de diseño y comprobación para protección contra inundaciones de avenidas en las obras, de acuerdo al tipo (instalaciones industriales, fabriles o civiles; obras viales; poblaciones; obras hidrotécnicas y áreas de cultivos y drenaje) y categorías (I, II, III y IV) de las obras. De estas, las de mayor interés para el ingeniero civil son las correspondientes a las instalaciones industriales, fabriles o civiles, las obras viales, así como las poblaciones. Por ello, se presentan las **Tablas 33**, **34** y **35**.

Observaciones:

- 1. En todos los casos, los puentes de las vías y otras obras de fábrica tendrán, como mínimo, categoría igual a la de la vía.
- 2. La denominación de las obras, ya sean de gran importancia o de menor importancia, será dada por el organismo estatal correspondiente en cada caso.

Observaciones:

- 1. Se refiere a colectores abiertos, tanto interiores como exteriores a los centros poblacionales.
- La denominación de las instalaciones, por su importancia, será establecida por los organismos estatales correspondientes.

Para el *drenaje pluvial urbano*, la *probabilidad de la precipitación* a utilizar en la *Fórmula Racional* para las áreas urbanizadas, mediante la (**Tabla 36**).

xEl drenaje pluvial de cubiertas y la probabilidad de proyecto en dependencia de las diferentes categorías de las obras. (Tabla 37).

Consideraciones para su aplicación

El procedimiento de aplicación de la Fórmula Racional es muy sencillo, si se tienen en cuenta las consideraciones planteadas en la determinación de cada uno de los parámetros de la misma. Pero debe tenerse presente que uno de los parámetros que crea mayor incertidumbre es la *selección del coeficiente de escurrimiento C*, por lo que el mismo debe asumirse a partir de las diferentes tablas existentes, de las cuales se ha realizado una selección en el presente texto, en correspondencia con las características del área a drenar.

Observaciones:

- La probabilidad a utilizar en el proyecto podrá ser modificada en función de la importancia económica y social de la obra, teniendo en consideración: posibilidad de pérdidas de vidas humanas y daños considerables a las obras, así como, costo inicial, utilidad y permanencia de las obras.
- Lo anterior estará regido por los estudios hidrológicos del lugar donde se construye la obra.

La selección de diferentes valores de *C*, según las características del área a drenar, determina el cálculo de diferentes valores del gasto máximo a la probabilidad dada, por lo que este gasto o caudal no se pude considerar puntual, al aplicar la Fórmula Racional para un solo valor de *C*, sino comprendido en un rango, en correspondencia con los valores extremos de *C* asumidos, para los cuales se aplicará

dicha fórmula. Esta consideración minimiza el grado de incertidumbre en la selección del *coeficiente* de escurrimiento C.

En cuanto a la determinación del valor de intensidad de la lluvia, para una probabilidad dada, debe priorizarse su obtención mediante las curvas IFD correspondientes a la cuenca en estudio, del tipo de la Figura. Y solamente cuando ello no sea posible a través del Nomograma para el cálculo de la intensidad de la lluvia de diferentes probabilidades y duraciones para cualquier punto del Ecuador

Las *limitaciones* propias de la concepción de la Fórmula Racional, como son la consideración de una *lluvia de intensidad uniforme* para toda la cuenca durante un tiempo igual al tiempo de concentración y asumir que todos los puntos de la cuenca están contribuyendo a la vez, se minimizan al limitar el área de la cuenca por debajo de los 60 km^2 , que es su límite de validez.

La *limitación* en cuanto a no tener en cuenta el efecto de *almacenamiento superficial*, se minimiza al aplicarla en cuencas, que, por su geomorfología, no presentan áreas significativas con posibilidades de inundación; o de almacenamiento superficial controlado, como embalses, o no controlado, como lagunas; siendo recomendable su aplicación con cautela en zonas muy llanas. (González Fernández & Suárez R)

Particularidades de su aplicación en vías urbanas

□ Acerca de las áreas parciales de drenaje

El diseño de un microdrenaje urbano presenta una particularidad al determinar las áreas parciales de drenaje, en relación con las zonas rurales, ya que el drenaje se realiza por caminos previamente definidos, como son las cunetas y badenes, los tragantes y los emisarios (ver Capítulo 1, epígrafe 1.1.2). En este caso, puede tornarse complejo el trazado de las divisorias de las aguas a lo largo de las cuadras de la urbanización, debido a las correcciones de la topografía, mediante corte y terraplenes, para la ubicación de las edificaciones.

Por ello, en la gran mayoría de los casos, las áreas parciales de drenaje se delimitan a través de los cruces de las vías urbanas, que son considerados puntos de análisis del drenaje vial urbano. De esta forma, debe asociarse un área de drenaje a cada punto de estudio considerado. Por lo que, para simplificar la complejidad del análisis, se considera que cada tramo de cuneta recibe el agua procedente de la cuadra adyacente, exceptuando aquellas zonas en que las pendientes son muy pronunciadas (Figura 59).

Como se observa en la figura de referencia existen cuatro áreas cuadradas y dos rectangulares. Cada una de ellas se divide en cuatro áreas parciales de drenaje, de acuerdo a lo representado en la **Figura 60.**

En las áreas cuadradas y rectangulares el área total A_T resulta ser:

$$A_T = L_1 \cdot L_2 = A_1 + A_2 + A_3 + A_4$$

En las áreas cuadradas se tiene que:

$$L_1 = L_2 = L$$

Por lo que:

$$A_1 = A_2 = A_3 = A_4 = A$$

La que se expresa como:

$$A = \frac{1}{4} \cdot A_T = \frac{1}{4} \cdot L^2$$

En las áreas rectangulares se tiene que L_1 mayor que L_2 , por lo que se toman iguales las áreas parciales opuestas, o sea:

$$A_1 = A_2 \qquad \mathbf{y} \qquad A_3 = A_4$$

Las que se expresan como:

$$A_1 = A_2 = \frac{1}{4} \cdot L_2^2$$

$$A_3 = A_4 = \frac{A_T - 2A_1}{2}$$

Acerca de los tiempos de concentración

En zonas urbanizadas, diferentes áreas, con diferentes tiempos de concentración calculados según (6.27), pueden drenar hacia uno o más puntos considerados en los conductos de drenaje. En estas zonas, para cumplir la premisa en la que se asume que todos los puntos de la cuenca están contribuyendo a la vez, se debe escoger el mayor tiempo de concentración, de cada uno de los calculados para las diferentes subcuencas que tributan al punto considerado del conducto de drenaje, para hacerlo coincidir con el

tiempo de duración de la lluvia a la probabilidad de diseño, lo que determina el menor valor de intensidad de la lluvia.

En un sistema de drenaje ramificado (**Figura 61**), para un punto del conducto considerado en el análisis, en diseño o revisión, puede obtenerse más de un tiempo de concentración, según la ramificación del sistema hasta el conducto.

En la figura de referencia los puntos de análisis de la red se representan por la letra R (registro). Como se observa, hay nueve puntos de análisis.

Considerando R_1 , a él tributan dos tragantes, a los cuales tributan dos áreas parciales diferentes. Al tragante de la izquierda se asocia un *tiempo de entrada* t_{e1_A} y al de la derecha se asocia un t_{e1_B} , los cuales son diferentes (ambos se pueden obtener de la **Figura 58**). Por lo que el *tiempo de entrada* a considerar en R_1 (t_{eR_1}) será el mayor de los dos, para garantizar que ambas áreas (A_1 y A_5) tributen a la vez. Como es un registro inicial de la red ramificada, solo existe tiempo de entrada en la ecuación (6.27), o sea, que el *tiempo de concentración* hasta el registro es:

$$t_{cR_1} = t_{eR_1}$$

Considerando ahora R_2 , a él tributa un solo tragante (área parcial A_2) por lo que su tiempo de entrada t_{eR_2} coincide con el del tragante. Como es también un registro inicial de la red ramificada, el *tiempo* de concentración hasta el registro es:

$$t_{c_{R_2}} = t_{e_{R_2}}$$

Considerando el tercer registro R_3 , a él tributan directamente cuatro tragantes (ver conexiones en Figura 61) y dos conductos, procedentes de R_1 y R_2 , por lo que se considera el *tiempo de recorrido* desde estos dos registros. Al aplicar la expresión (6.27) para calcular el *tiempo de concentración* hasta R_3 :

$$t_c = t_e + \sum_{i=1}^n t_{ri}$$

Se debe tener presente que:

✓ Se aplica la expresión por cada uno de los caminos hasta llegar a R₃, y se escoge el mayor valor de t_c de los dos hallados.

- ✓ Para cada camino, el primer término se corresponde con el tiempo de concentración hallado para el nodo inicial y el segundo término (formado solo por un tramo) se calcula aplicando la expresión (6.26), según corresponda para cada tramo.
- ✓ El *tiempo de entrada* al registro 3 corresponde al mayor tiempo de entrada de los calculados para cada uno de los cuatro tragantes que tributan directamente a él. Este se compara con el mayor valor hallado por (6.27), si resulta menor, se mantiene el t_c calculado como el *tiempo de concentración* para el R₃ (t_{cR_3}); en caso contrario se asume como nuevo valor el tiempo de entrada hallado para dicho registro.

Considerando el R₄, a él tributa un solo tragante (área parcial A₁₀) por lo que su tiempo de entrada t_{eR_2} coincide con el del tragante. Como es también un registro inicial de la red ramificada, el *tiempo* de concentración hasta el registro es:

$$t_{cR_A} = t_{eR_A}$$

Considerando ahora el quinto registro R_5 , a él tributan directamente tres tragantes (ver conexiones en Figura 61) y dos conductos, procedentes de R_3 y R_4 , por lo que se considera el *tiempo de recorrido* desde estos dos registros. Al aplicar la expresión (6.27) para calcular el *tiempo de concentración* hasta R_5 :

$$t_c = t_e + \sum_{i=1}^n t_{ri}$$

Se debe tener presente que:

✓ Se aplica la expresión por cada uno de los caminos hasta llegar a R₅ (tres caminos), y se escoge el mayor valor hallado de t_c. Considerando que hasta los registros 3 y 4 ya tenemos su t_c, la expresión (6.27) puede escribirse como:

$$t_{cR} = t_{cR_{ant}} + t_{r(R_{ant}-R)}$$

- ✓ Para cada camino, el primer término se corresponde con el tiempo de concentración hallado para un registro anterior y el segundo término se calcula aplicando la expresión (6.26), según corresponda para cada tramo.
- ✓ El *tiempo de entrada* al registro 5 corresponde al mayor tiempo de entrada de los calculados para cada uno de los tres tragantes que tributan directamente a él. Este se compara con el mayor valor hallado por (6.27), si resulta menor, se mantiene el *t_c* calculado como el *tiempo de concentración*

para el R_5 (t_{cR_5}); en caso contrario se asume como nuevo valor el tiempo de entrada hallado para

dicho registro.

Con lo expuesto hasta aquí, puede abordarse, sin ninguna dificultad, el análisis de los registros

restantes de la red ramificada, y por extensión cualquier caso posible dentro de este tipo de red de

drenaje.

Determinación de las áreas parciales de drenaje y los tiempos de concentración

De acuerdo con el trazado de la red de drenaje ramificada (Figura 61) se puede confeccionar la

Tabla 38 que agrupa las contribuciones de las diferentes áreas parciales de drenaje a cada uno de los

nodos de la red ramificada mostrada.

También se puede confeccionar la **Tabla 39** que recoge el análisis de los tiempos de concentración

para cada nodo.

*: El tiempo de concentración será el mayor de las alternativas posibles.

**: Se incluyen también como alternativas los tiempos de entrada al registro.

Con los datos que agrupan las Tablas 38 y 39 se dispone de la información necesaria para el diseño

de los elementos de la red de drenaje utilizando la Fórmula Racional, ya que se dispone del tiempo

de concentración para cada área parcial de drenaje. El procedimiento para la utilización de la Fórmula

Racional se ejemplifica en el epígrafe 2.5.1.4 y el procedimiento para el diseño de una red de drenaje

pluvial ramificada en zona urbana se aborda y ejemplifica en el Capítulo 4, en el que se incluye el

cálculo hidrológico de los gastos para el diseño de los diferentes elementos y tramos de la red, ya que

es parte integrante del mismo.

CAPITULO VII: ALCANTARILLAS Y PUENTES

83

7.1. PRINCIPIOS DEL DISEÑO HIDRÁULICO DE ALCANTARILLAS Y PUENTES

7.1.1 Alcantarillas

Un análisis exacto del flujo en las alcantarillas es extremadamente complejo debido a que el mismo es usualmente no uniforme con transiciones entre flujo gradualmente variado hasta rápidamente variado, incluyendo fenómenos de saltos hidráulicos, caídas y remansos.

El Departamento de Transporte de los Estados Unidos a través de la Administración Federal de Carreteras (FHWA, 1998) publicó el análisis del comportamiento del flujo en las alcantarillas, incluyendo nomogramas y gráficos elaborados sobre la base de ensayos hidráulicos y cálculos teóricos que permiten leer directamente los valores de la carga de agua a la entrada de la alcantarilla. Los procedimientos presentados en dichas publicaciones han sido analizados y desarrollados para cada tipo de flujo sobre la base de una sección de control, de manera que el escurrimiento de la alcantarilla es controlado por la capacidad hidráulica de dicha sección de control del flujo.

Descarga de una al cantarilla más transición y canaleta de madera y metal de sección compuesta.

7.1.2. Puentes

En los estudios hidráulicos se determina el nivel de agua correspondiente al gasto hidrológico, o sea, el nivel de la cota de diseño (NCD), pero si existe restricción a la circulación de la corriente (**Figura** 62) el estudio hidráulico debe ser complementado con el análisis de las perturbaciones hidráulicas

provocadas por esa restricción: *remanso* y *socavación*. Evidentemente, lo más racional es introducir el puente dentro del valle de inundación y velar porque las magnitudes de estas perturbaciones no rebasen los valores permitidos.

Cuando el gasto de diseño se conoce, el nivel del agua no puede ser obtenido directamente, sino que se requiere un proceso de tanteos, el cual consiste en fijar un determinado nivel del agua, calcular el gasto haciendo uso de la conocida fórmula de Manning, según se explica en la sección 4.6.3, y posteriormente comparar éste valor con el de diseño; repitiéndose este proceso hasta determinar el nivel del agua que corresponde al gasto de diseño.

En la fig. 63 se muestra un puente en construcción del Trasvase

Principios del diseño hidráulico de alcantarillas y puentes.

1-Los puentes y alcantarillas proyectados en corrientes fluviales, deberán asegurar el paso del caudal o gasto de diseño y el movimiento de objetos flotantes en su nivel de agua máxima en correspondencia a la probabilidad del gasto de diseño según se establece en la presente norma.

2-Los puentes en corrientes fluviales deberán garantizar el transporte, cuando se proyecten en zonas donde exista el mismo.

3-El cálculo hidráulico de puentes, pasos peatonales, alcantarillas y terraplenes de accesos situados en valles de inundación, bajo la influencia de la corriente del agua, habrá de realizarse con los gastos de diseño o nivel de crecida de diseño, cuya probabilidad de ocurrencia se indica en la **Tabla 40.** Permitiéndose variar la probabilidad del gasto de diseño en función del análisis técnico económico realizado por el proyectista.

4-Los puentes y alcantarillas donde se prevea cambios de categoría de la vía, deberán ser proyectados para la probabilidad correspondiente a la categoría superior.

5- El cálculo del área para el paso de las aguas en los puentes y alcantarillas se realizará de acuerdo con los gastos de diseño, determinados a partir de los métodos de cálculo hidrológicos establecidos, de acuerdo a las velocidades promedios de la corriente que pueda tolerar la superficie del lecho del cauce (asegurando las condiciones normales de explotación) realizando un estudio cuidadoso de las condiciones locales.

6- El área hidráulica que se defina tanto para puentes como para alcantarillas deberá ser suficiente para dar paso al gasto de diseño, sin que se forme superelevación exagerada aguas

arriba y el flujo circule a una velocidad tal, que la socavación producida en el fondo del cauce, no ponga en peligro las condiciones de estabilidad de la estructura o los bordes o márgenes de los terraplenes de acceso.

- 7 A los efectos de esta norma, los ríos de acuerdo al lugar de emplazamiento del puente y al área de la cuenca que les tributa caudal y longitud, se clasifican en correspondencia con lo establecido en la **Tabla 41**
- **8-**En cada cruce de la vía con una corriente fluvial, deberá proyectarse una sola estructura cuya abertura permita pasar el gasto de diseño, obtenido de acuerdo a la probabilidad establecida en la **Tabla 40**, cumplimentando los requisitos hidráulicos de remanso y socavación, técnico económicos y otros establecidos en esta norma. Sólo cuando las partes interesadas se permitan el paso de más de un canal de riego o drenaje por una estructura.
- **9-** Cuando cerca de la vía proyectada se encuentren poblaciones, es necesario comprobar que por efecto de inundaciones, no se afecten las mismas por la formación de remanso aguas arriba de la obra de fábrica.
- **10-** Se permite proteger el cauce de los puentes contra la socavación en longitudes menores a 10,00 m, si se justifica económicamente.
- 11 El perfil del cauce socavado bajo los puentes se calculará para el gasto de diseño.

Al calcular la socavación es preciso tener en cuenta además de la construcción general a la corriente, la socavación local en pilas y estribos, la influencia de las obras de encauzamiento, así como las modificaciones naturales que puede tener el cauce y posibles trabajos de rectificación del mismo.

12- El coeficiente de socavación general calculado con el gasto de diseño, no puede superar los valores de la **Tabla 42** para la abertura calculada del puente. Al calcular el coeficiente de socavación, no se tiene en cuent el área ya socavada, ni los posibles cortes del terreno.

Quedando definido por la relación entre el área hidráulica incluida la socavación y el área hidráulica calculada para el gasto de diseño sin incluir la socavación, según la formula siguiente.

$$\alpha_1 = \frac{A_i + A_{si}}{A_i} \tag{6.1}$$

Donde:

A_I es el área hidráulica calculada para el gasto de diseño sin socavación (m²). A_{SI} es el área hidráulica socavada (m²).

El gasto unitario de diseño (q₀) se calcula mediante la siguiente relación:

$$q_0 = \frac{Q_D}{L_0} \tag{6.2}$$

Donde:

Q_D: gasto de diseño (m³/s).

L₀: longitud de la abertura que corresponde a la socavación nula (m)

- 13- Cuando se requiera aumentar el área bajo el puente, se puede realizar un corte (excavación) en las zonas de los valles de inundación. La magnitud de este corte no será mayor del 25% del área bajo el puente, con excepción de los cauces artificiales. Debe cumplirse que el área socavada y el corte de terreno adicionado no pueden exceder el 50% para ríos no navegables y del 35% para ríos navegables respecto al área calculada por el gasto de diseño correspondiente.
- **14-** La profundidad de la superficie inferior del cimiento, o del cabezal del grupo de pilotes en caso de cimentación indirecta, hasta la cota de socavación en el lugar de enclave de estos, la establecerá el proyectista de acuerdo a los datos geológicos del lecho del río, adoptándose un rango mínimo de 1,00 m a 1,50 m en dependencia del tipo de suelo y profundidad de la socavación.
- 15- El borde del terraplén de acceso a los puentes y alcantarillas con regímenes a presión y semipresión, así como los diques, deberá elevarse como mínimo 1,00 m sobre el nivel de máximo remanso, de la misma manera el borde de las obras de encauzamiento y el de las bermas del terraplén se elevarán 0,50 m como mínimo con respecto a dicho nivel. Se tendrá en cuenta la influencia de olas sobre el talud y el remanso del cauce bajo el puente.
- 16- Los taludes de los diques de tierra de las obras de encauzamiento orientados hacia el río deberán

tener una pendiente no mayor que 1:2 y en la parte contraria no mayor que 1:1,5; fijándose como

ancho mínimo de la parte superior de los diques 2,00 m.

17- Para puentes de ríos grandes, en los casos que sea necesario, deberán preverse obras de

encauzamiento y de protección de las márgenes. Para puentes sobre pequeñas corrientes de agua y

alcantarillas, se deben contemplar, cuando corresponda, el profundizar y regular el cauce dentro de

los límites de la obra, especialmente a la entrada y la salida de la misma, donde podrán

proyectarse obras con el propósito de amortiguar la velocidad de la corriente, también se puede

mejorar las condiciones de la sección del cauce en la zona de cruce, depositando en dicha zona

material con diferente granulometría o densidad, de forma de atenuar las turbulencias que puede

generar la socavación.

18- La socavación al pie de las pilas y los estribos se recomienda que sea determinada por

procedimientos especiales en este tipo de estructura.

19- La determinación de la altura de remanso se realizará acudiendo a la literatura especializada del

tema.

Gasto de alcantarillas con entrada sumergida.

Cálculo del gasto con entrada sumergida

Para

A: área de la alcantarilla

Q: gasto

$$z = \frac{Q}{2g\mu^2 A^2}$$
 $Q = \mu.A\sqrt{2gz}$ $\mu = 0.7$

El espesor mínimo de relleno sobre las alcantarillas, tendrá que ser superior a 0,60 m.

 μ = coeficiente

En alcantarillas para carretera se permite una dimensión límite mínima de 0,90 m para una longitud menor de 30,00 m, 0,75 m para longitudes entre 15,00 m y 30,00 m y 0,60 m para longitudes

menores a 15,00 m.

En autopistas, las dimensiones libres de la sección transversal de alcantarillas serán mayores a 0,90 m para longitudes menores a 20,00 m y mayores a 1,25 m para longitudes mayores a 20,00 m.

La longitud de los elementos prefabricados para alcantarillas tanto circulares como rectangulares, se determina de las condiciones locales de trabajo, pero no deberá sobrepasar los 5,00 m de longitud.

- **9.5** Para alcantarillas de hormigón armado, en los elementos prefabricados iguales o mayores a 3,00 m de longitud, deberá comprobarse la resistencia a la flexión en el sentido trasversal del terraplén.
- **9.6** Se permitirá en autopistas, carreteras y vías urbanas, que las alcantarillas para los gastos de diseño, trabajen a semipresión o a presión (con embocaduras hidrodinámicas), siempre que se usen cimentaciones adecuadas, que aseguren la impermeabilidad de las juntas entre tramos, la estabilidad del terraplén contra la filtración y se tomen todo tipo de medidas que garanticen el buen funcionamiento de la alcantarilla.
- **9.7** Las alcantarillas se diseñaran con embocaduras de entrada y salida, cuya forma y dimensiones, garanticen condiciones favorables al paso de las aguas y a la estabilidad del terraplén adyacente, así como la reducción de la socavación.
- **9.8** En las alcantarillas sin cimiento, hay que prever las medidas constructivas contra el desplazamiento de los elementos, como la deformación del suelo y del terraplén.
- **9.9** Cuando la corriente produzca el arrastre de grandes piedras, troncos, ramas de árboles o desechos, que puedan producir el efecto de palizada, no se permitirá el empleo de alcantarillas sin la debida justificación técnico económica. En lugares donde se puedan producir avalanchas (ríos montañosos), se tomarán medidas especiales de forma adicional.
- **9.10** La elevación del punto más alto de la superficie interior de la alcantarilla sobre el nivel del agua dentro de la misma, correspondiente con el gasto de diseño y sin presión deberá ser:
- a) En alcantarillas circulares y abovedadas con altura libre interior de hasta 3,00 m, mayor o igual que 0,25 m de tal altura libre y con una altura libre mayor que 3,00 m, deberá ser mayor o igual que 0,75 m.
- b) En las alcantarillas rectangulares con una altura libre de hasta 3,00 m, dicha elevación deberá ser mayor o igual que 0,15 m de la altura libre, mientras que para altura libre mayor que 3,00 m, deberá ser mayor o igual que 0,50 m. (Soto L., 1985)

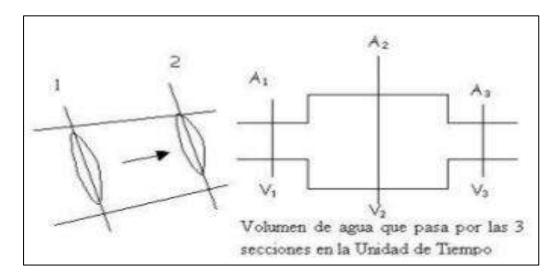


Figura 1

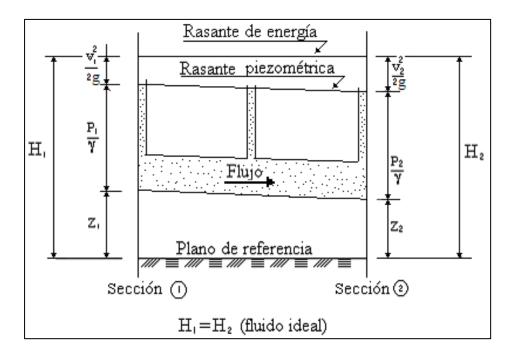


Figura 2 Representación gráfica de la ecuación de Bernoulli para flujo ideal

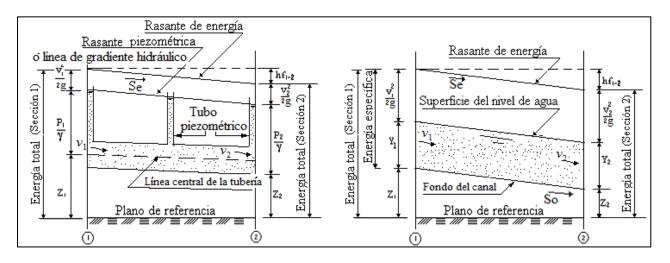


Figura 3 Representación de la ecuación de Bernoulli para fluido real

(a) Conducción forzada (flujo en tuberías). Conducción libre (flujo **(b)** canales en abiertos).

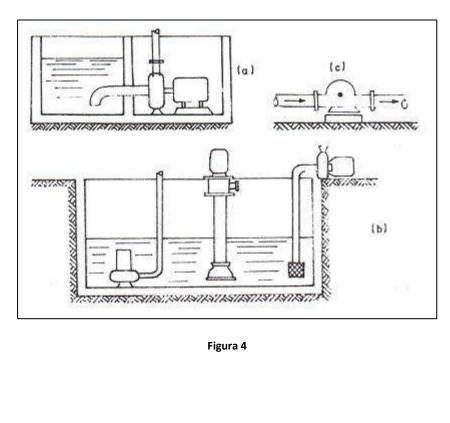


Figura 5 Partes componentes esenciales de una maquina hidráulica.

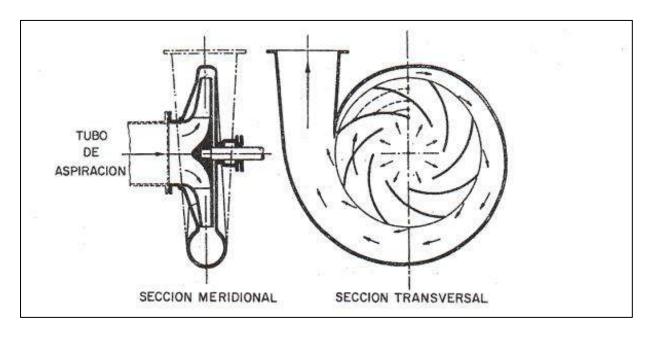


Figura 6 Representación esquemática de una bomba roto dinámica.

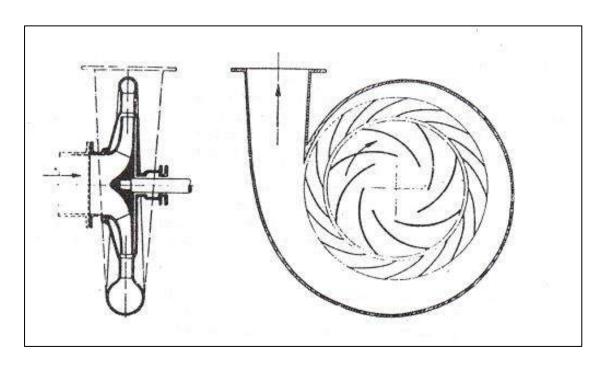


Figura 7 Bomba roto dinámica con alabes directores en la caja.

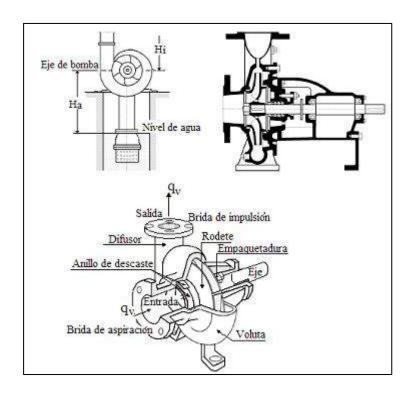


Figura 8 Bomba centrífuga: disposición, esquema y perspectiva

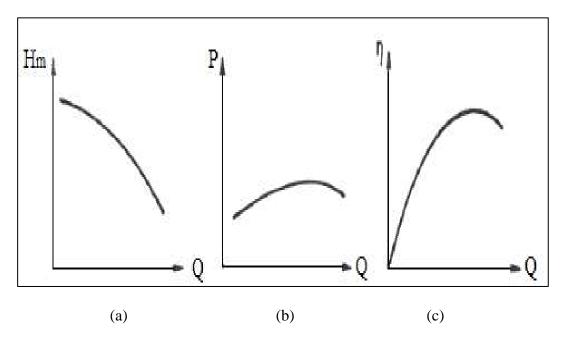


Figura 9 Curvas características de la bomba.

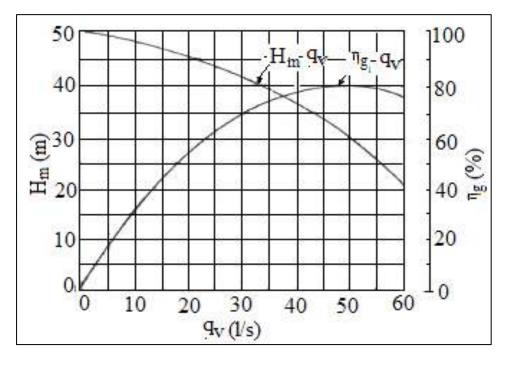


Figura 10 Curvas características de una bomba

Hm: altura manométrica o carga dinámica, en m.

qv: caudal impulsado por la bomba, que circula por la brida de salida, o caudal útil, en m3/s. η : rendimiento (%)

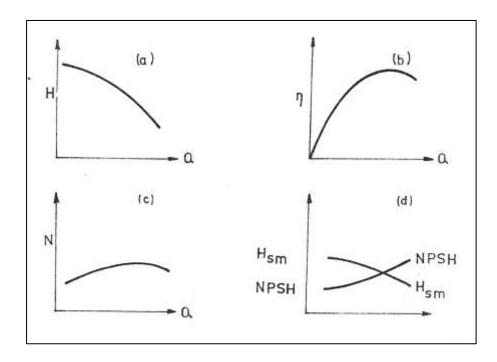


Figura 11 Curvas características individuales.

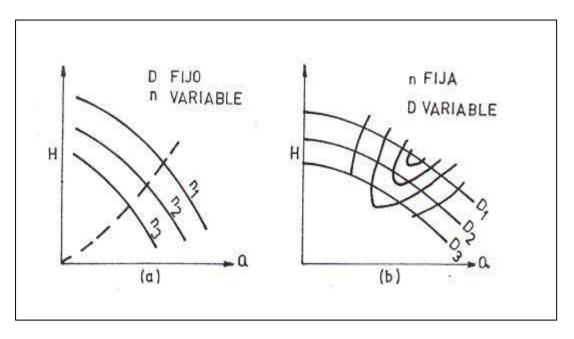


Figura 12 Curvas para velocidad variable de una bomba y para diámetro variable del impelente.

Figura 13 Representación esquemática de la carga a elevación.

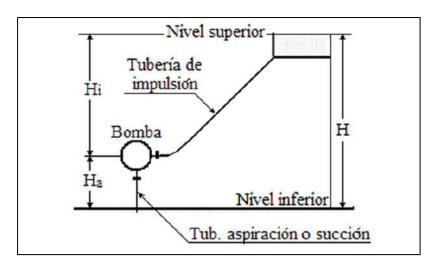


Figura 14 Cargas estáticas a considerar en una instalación con bomba.

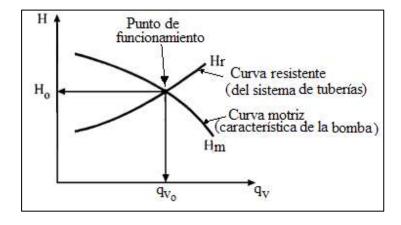


Figura 15 Punto de funcionamiento de una instalación.

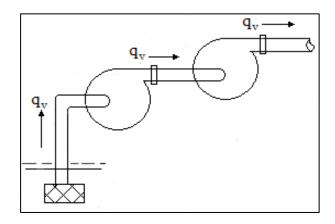


Figura 16 Bombas horizontales colocadas en serie

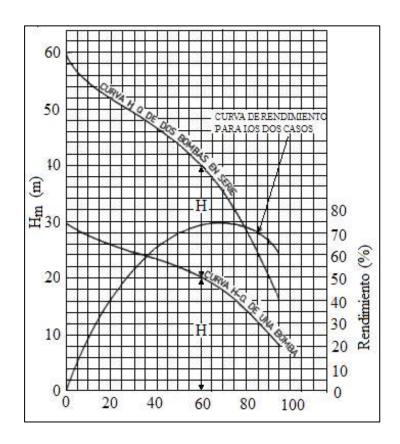


Figura 17 Curva de dos bombas iguales en serie

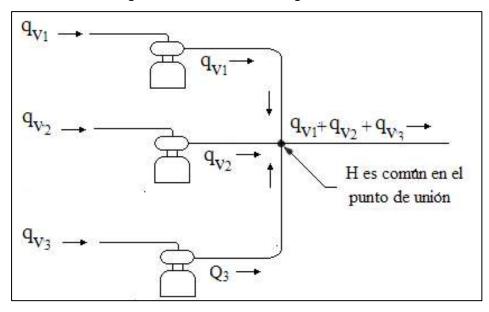


Figura 18 Representación de bombas en paralelo (Pérez, 1999).

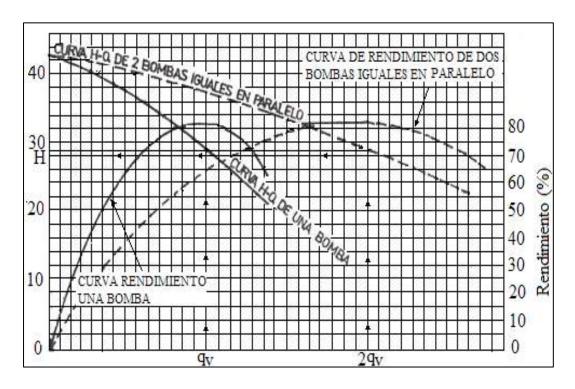


Figura 19 Curvas de dos bombas iguales en paralelo.

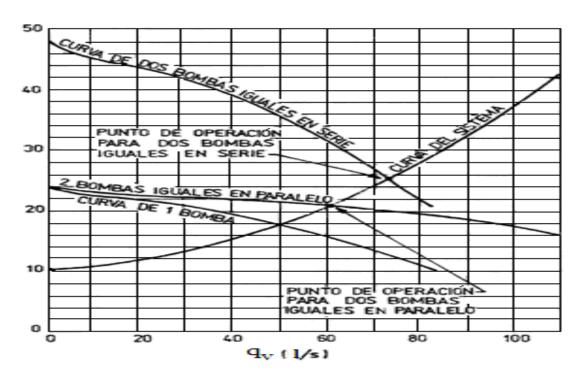


Figura 20 Análisis de la instalación de dos bombas iguales en serie o paralelo

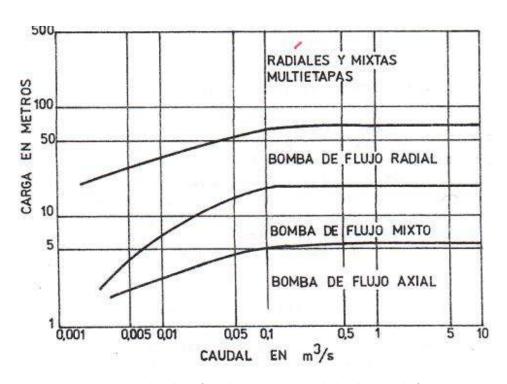


Figura 21 Campo de aplicación de los distintos tipos de bombas rotodinámicas.

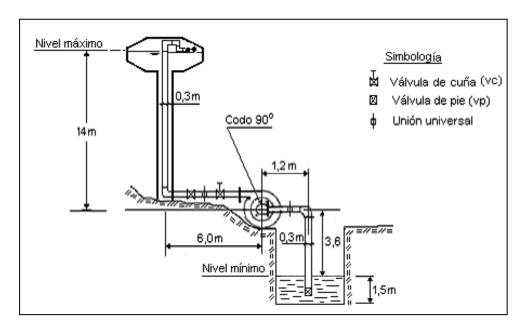


Figura 22 Esquema de instalación de la bomba.

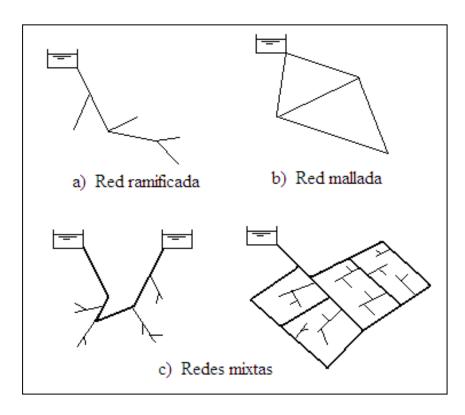


Figura 23 Tipos de redes según la topología (UPV, 1996).

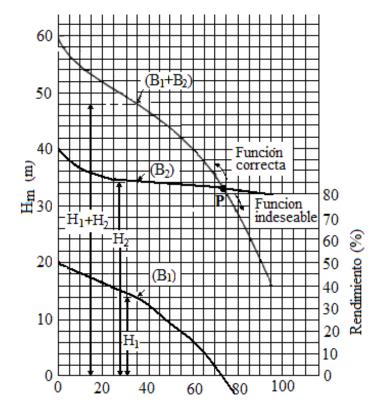


Figura 24 Curva de dos bombas diferentes acopladas en serie

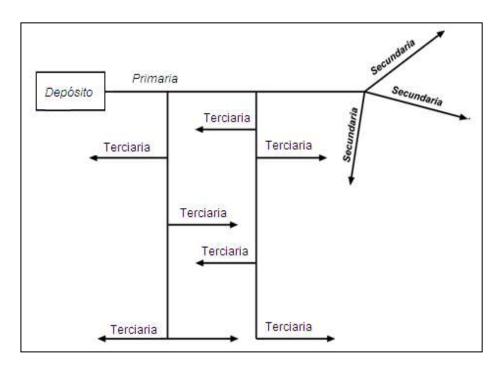


Figura 25 Esquema de una red ramificada.

Figura 26 Ejemplo de basto de agua.

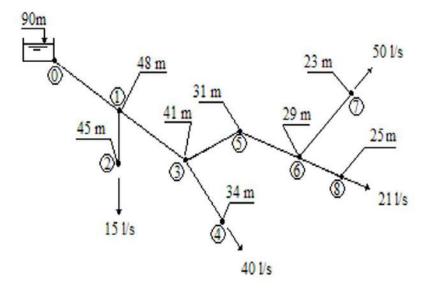


Figura 27

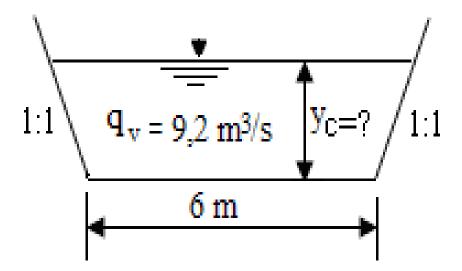


Figura 28 Sección longitudinal de un canal.

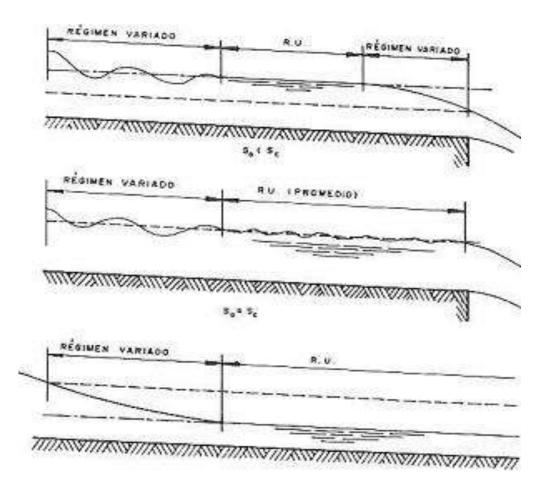


Figura 29 variantes de establecimiento del régimen uniforme.

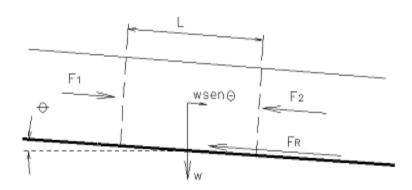


Figura 30 fuerzas actuantes en el régimen uniforme.

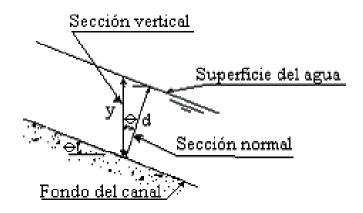


Figura 31 Sección normal y sección vertical.

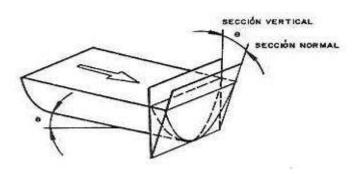


Figura 32 Representación de las secciones de un canal

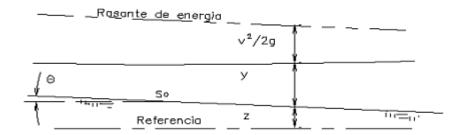


Figura 33 Representacion del perfil

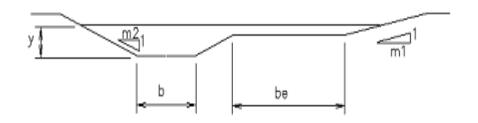


Figura 34 Representación de la sección transversal

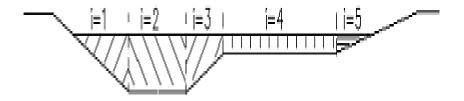


Figura 35 Subdivisión de una sección

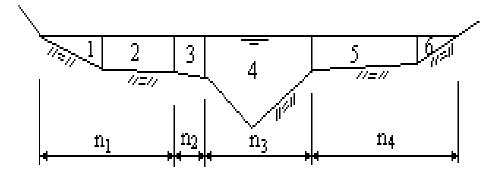


Figura 36 División de la sección compuesta.

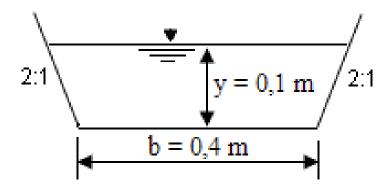


Figura 37

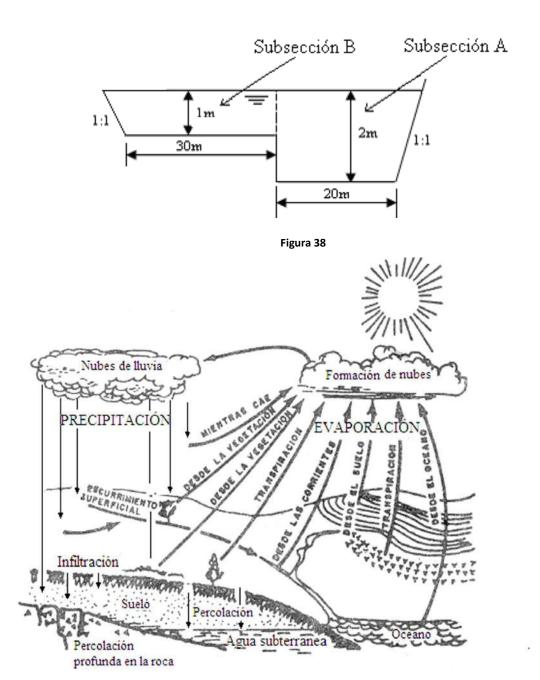


Figura 39 Esquema descriptivo del Ciclo Hidrológico (Campos, 1992).

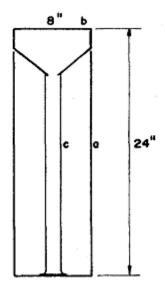


Figura 40 Pluviómetro

Figura 41 Pluviograma.

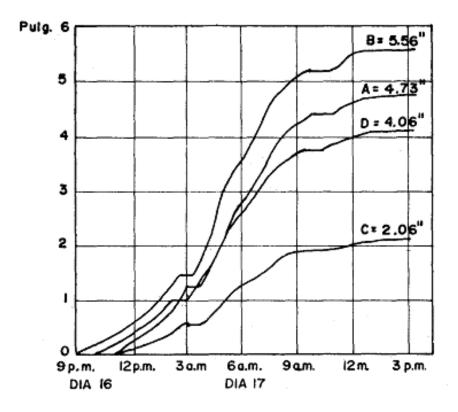


Figura 42 Curvas masa de precipitaciones.

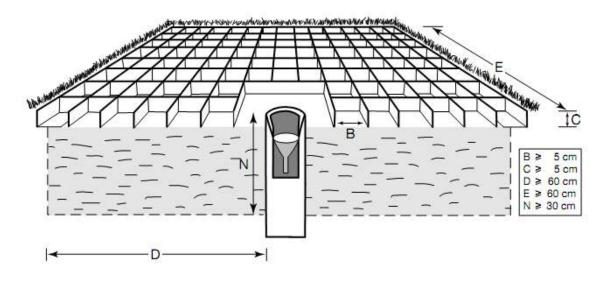


Figura 43 Pluviómetro enterrado para medir las precipitaciones líquidas

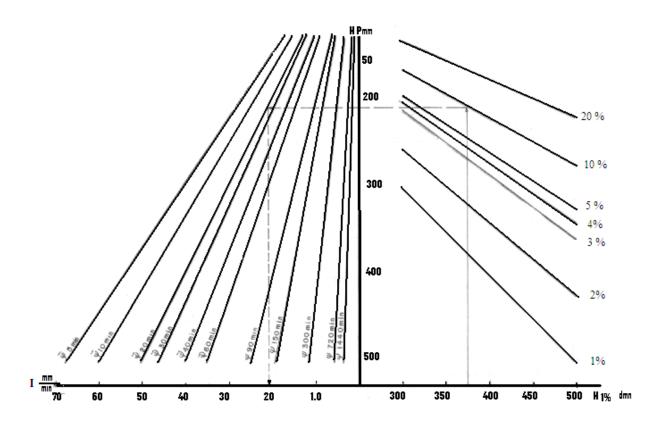


Figura 44 Ejemplo Nomograma para el cálculo de la intensidad de la lluvia de diferentes probabilidades y duraciones para cualquier punto de Latinoamérica (CEN, 1984a).

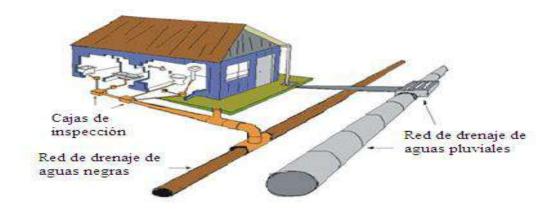


Figura 45 Representación de las redes de drenaje (Hiroshi, 2003).

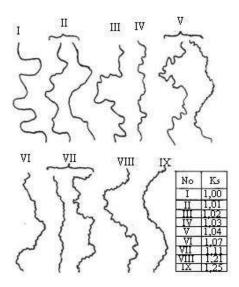


Figura 46 Modelos de sinuosidades de los ríos y sus coeficientes de sinuosidad.

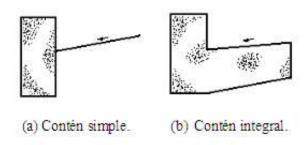


Figura 47 Tipos de contenes.

Figura 48 Tipos de tragantes.

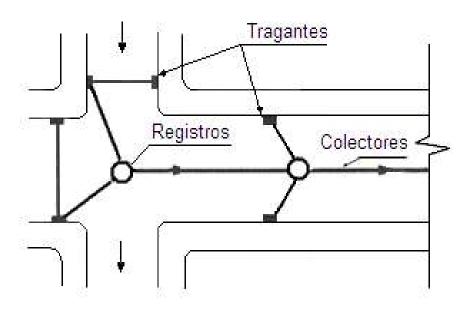


Figura 49 Esquema de drenaje vial urbano.

Figura 50 Canales de drenaje urbano.

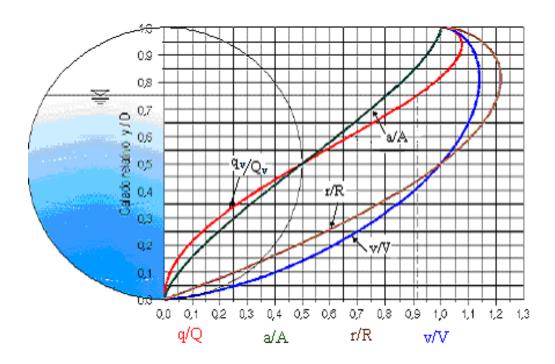


Figura 51 Relaciones adimensionales de caudal, velocidad, área y radio hidráulico para sección circular, en función de la profundidad relativa y/D.

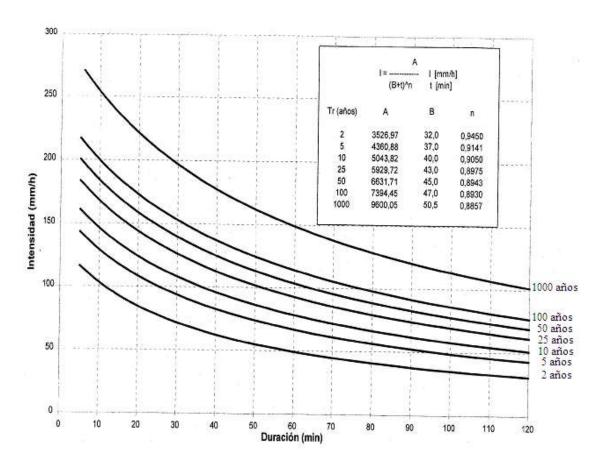


Figura 52 Curvas IFD del pluviógrafo H-350 (González, 2000).

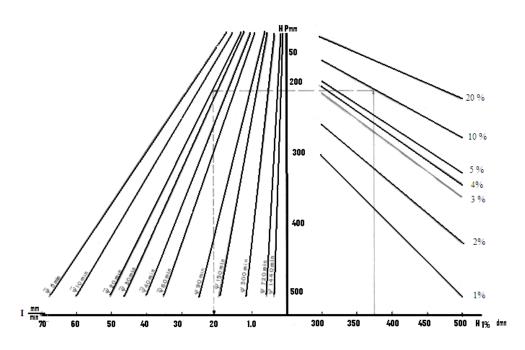


Figura 53 Ejemplo Nomograma para el cálculo de la intensidad de la lluvia de diferentes probabilidades y duraciones para cualquier punto de la Latinoamérica (CEN, 1984a).

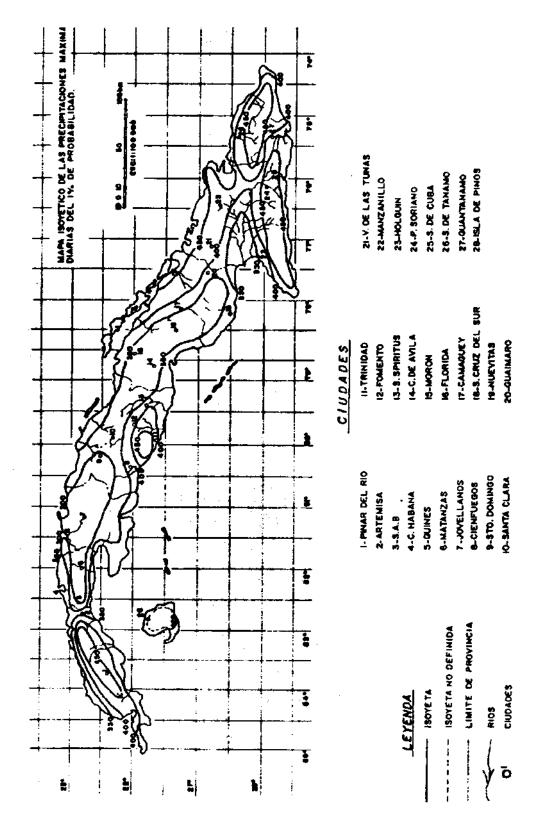


Figura 54 Ejemplo Mapa isoyético de las precipitaciones máximas diarias del 1% de probabilidad de la Latinoamérica (CEN, 1984a).



Figura 55 Gráfico de un hietograma de cálculo (González, 2000).

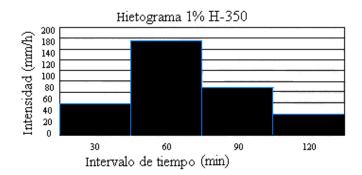


Figura 56 Gráfico de un hietograma reorganizado (González, 2000).

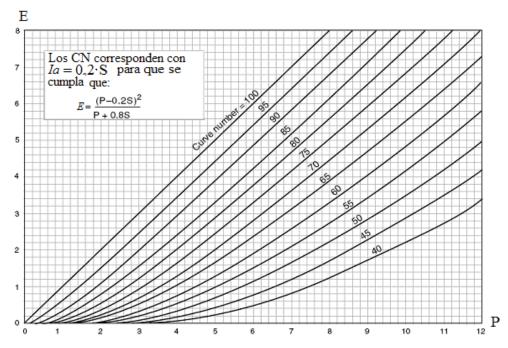


Figura 57 Relación lluvia escurrimiento (USDA, 1986).

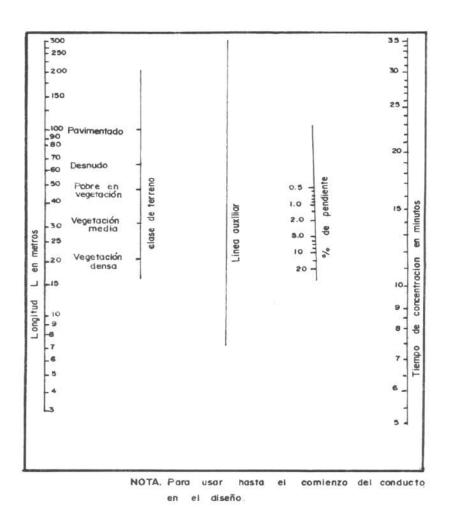


Figura 58 Nomograma para determinación del tiempo de concentración en zonas urbanizadas.

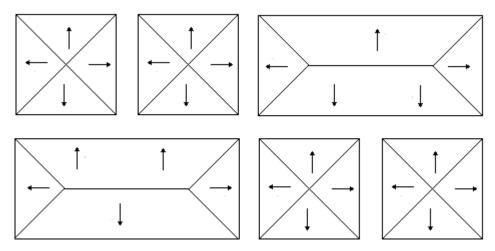
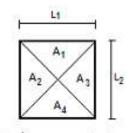
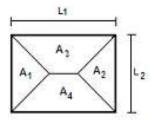




Figura 59 Subdivisión de las cuadras en áreas de drenaje.

(a) Áreas cuadradas.

(b) Áreas rectangulares

Figura 60 División en áreas parciales de drenaje.

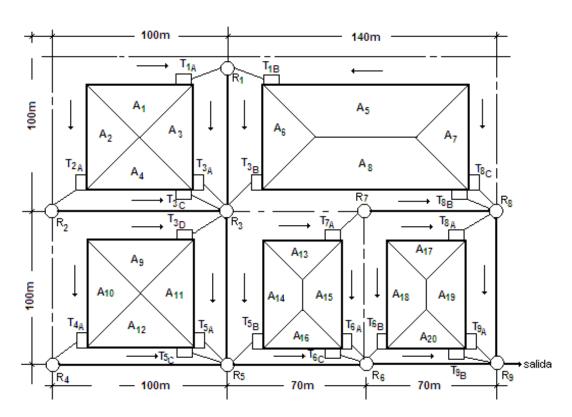
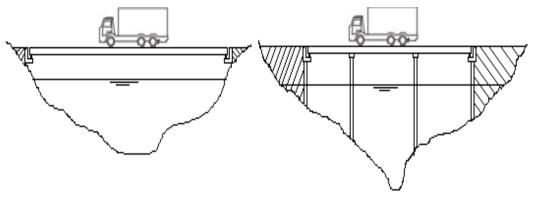



Figura 61 Red de drenaje ramificada de una zona urbana.

(a) Puente sin obstrucción del cauce

(b) Puente obstruyendo el cauce

Figura 62 Ubicación del puente en el cauce natural.

Figura 63

Tabla 1 Valores del coeficiente de rugosidad C de Williams-Hazen.

Tipos de tubería y condiciones de las paredes interiores	Coeficiente de rugosidad (C)
Tubería muy recta y lisa de hierro fundido, con la superficie interior recubierta con esmalte de alquitrán de hulla, nueva. Tubería muy recta y lisa de acero fundido o soldado, con la superficie interior recubierta con esmalte de alquitrán de hulla, nueva. Tuberías rectas de plomo, cobre, bronce, latón y cristal, nuevas.	140
Tubería lisa de hierro fundido, nueva. Tubería de acero fundido o soldado, nueva. Tubería de hormigón, con superficie interior recubierta de mortero, nueva.	130
Tubería de hierro fundido, acero fundido o acero soldado, con 5 años de uso.	120
Tubería de acero remachado, nueva. Tubería vitrificada, nueva. Tubería de hierro fundido, acero fundido o acero soldado, con 10 años de uso.	110
Tubería de hierro fundido, de acero fundido o de acero soldado, desde 14 a 20 años de uso. Tubería de acero remachado, con 10 años de uso.	100
Tubería vieja de hierro fundido, de acero fundido o acero soldado, con un diámetro mayor de 60 pulgadas (1 500mm).	80

Tabla 2

Número de línea	Entre los nodos	Longitud (m)
1	0 - 1	1 000
2	1 - 2	600
3	1 - 3	900
4	3 - 4	800
5	3 - 5	650
6	5 - 6	600
7	6 - 7	800
8	6 - 8	580

Tabla 3 Propiedades geométricas de las secciones más frecuentes (Chow, 2004).

Tipo de sección	Sección	Área (A)	Perímetro (P)	Ancho superficia l (<i>T</i>)
Rectangula r	T y	b· y	$b+2\cdot y$	b
Trapecial	T	$b \cdot y + m \cdot y^2$	$b+2\cdot y\cdot \sqrt{1+m^2}$	$b+2\cdot m\cdot y$
Triangular	T	$m \cdot y^2$	$2 \cdot y \cdot \sqrt{1 + m^2}$	$2 \cdot m \cdot y$
Circular	D e y	$\frac{1}{8} \cdot (\theta - sen\theta) \cdot D^2$	$\frac{\theta \cdot D}{2}$	$\left(\frac{sen\theta}{2}\right) \cdot D$ 6 $2 \cdot \sqrt{y \cdot (D-y)}$
Parabólica *	T Ty	$\frac{2}{3} \cdot T \cdot y$	$T + \frac{8}{3} \cdot \frac{y^2}{T}$	$\frac{3}{2} \cdot \frac{A}{y}$

Tabla 4 Valores de n para diferentes canales según Kutter (King, 1962).

Tipo de conducción	n
Cemento puro.	0,010
Mortero de cemento con 1/3 de arena.	0,011
Sillería u obra de ladrillo bien colocado.	0,013
Obra basta de ladrillo.	0,015
Mampostería concertada.	0,017
Canales excavados en grava firme.	0,020
Canales y ríos en buenas condiciones.	0,025
Canales y ríos con hierba y piedras.	0,030
Canales y ríos con malas condiciones.	0,035

Tabla 5 Valores de la n dados por Horton (León, 1989).

Material de la superficie de las conducciones	Estado de la superficie			
cerradas y abiertas	Óptimo	Bueno	Regular	Malo
Tubería de fundición sin revestir.	0,012	0,013	0,014	0,015
Tubería de fundición revestida.	0,011	0,012	0,013	
Tubería comercial de hierro dulce negra.	0,012	0,013	0,014	0,015
Tubería comercial de hierro dulce galvanizada.	0,013	0,014	0,015	0,017
Tubería lisa de latón y vidrio.	0,009	0,010	0,011	0,013
Tubería lisa soldada.	0,010	0,011	0,013	
Tubería remachada y de acero en espiral.	0,013	0,015	0,017	
Tubería vitrificada para albañales.	0,010	0,013	0,015	0,017
Tubería común de arcilla para drenajes.	0,011	0,012	0,014	0,017
Ladrillo con mortero de cemento.	0,012	0,013	0,015	0,017
Superficie de cemento puro.	0,010	0,011	0,012	0,013
Superficie de mortero de cemento.	0,011	0,012	0,013	0,015
Tubería de hormigón.	0,012	0,013	0,015	0,017
Canales con revestimiento de hormigón.	0,012	0,014	0,016	0,018
Superficie de mampostería con cemento.	0,017	0,020	0,025	0,030
Superficie de mampostería en seco.	0,025	0,030	0,033	0,035
Superficie de sillería.	0,013	0,014	0,015	0,017
Conductos metálicos semicirculares lisos.	0,011	0,012	0,013	0,015
Conductos metálicos semicirculares ondulados.	0,0225	0,025	0,0275	0,030
Canales y zanjas de tierra, rectas y uniformes.	0,017	0,020	0,0225	0,025
Canales en roca lisos y uniformes.	0,025	0,030	0,033	0,035

Canales en roca ásperos e irregulares.	0,035	0,040	0,045	
Canales sinuosos y de corrientes lentas.	0,0225	0,0275	0,030	0,033
Canales excavados en tierra.	0,025	0,030	0,035	0,040
Canales con lechos pedregosos y maleza en la orilla.	0,025	0,030	0,035	0,040
Canales fondos de tierra, lados de mampostería.	0,028	0,030	0,033	0,035
Corrientes naturales:				
> Limpios, rectos, sin sinuosidades en la sección.	0,025	0,0275	0,030	0,033
 Limpios, rectos, sin sinuosidades en la sección, pero con algo de maleza y piedras. 	0,030	0,033	0,035	0,040
> Trazado sinuoso, limpios con algunos bancos.	0,033	0,035	0,040	0,045
> Trazado sinuoso, limpios con algunos bancos, pero con bajas profundidades.	0,040	0,045	0,050	0,055
> Trazado sinuoso, algunas malezas y piedras	0,035	0,040	0,045	0,050
> Trazado sinuoso, bajas alturas, malezas y piedras.	0,045	0,050	0,055	0,060
> Tramos lentos con maleza.	0,050	0,060	0,070	0,080
> Tramos con mucha maleza.	0,075	0,100	0,125	0,150

Tabla 6 Valores para calcular la n de Manning según la ecuación 4.7 (Chow, 1959).

liciones del canal		Valores de n
	Tierra	0,020
Material del lecho.	Corte en roca	0,025
n_o	Grava fina	0,024
	Grava gruesa	0,028
	Suave	0,000
Grado de irregularidad.	Menor	0,005
n_1	Moderada	0,010
	Severa	0,020
	Gradual	0,000
Variación de la sección transversal.	Poco cambiante	0,005
n_2	Frecuentemente cambiante	0,010 – 0,015
	Despreciable	0,000
Presencia de obstáculo.	Menor	0,010 - 0,015
n_3	Apreciable	0,020 - 0,030
	Severa	0,040 - 0,060
	Poca	0,005 - 0,010
Vegetación.	Media	0,010 - 0,025
n_4	Mucha	0,025 - 0,050
	Excesiva	0,050 - 0,100
Curvatura.	Poca	1,000

m_5	Apreciable	1,150
	Severa	1,300

donde:

 n_0 : es la n básica en función del material del lecho.

 n_1 : cuantifica las irregularidades de la superficie de la sección transversal.

 n_2 : cuantifica las variaciones en la forma y dimensiones de la sección transversal.

 n_3 : cuantifica el efecto relativo de las obstrucciones.

n4: cuantifica el grado de influencia de la vegetación.

 m_5 : cuantifica las curvas en el trazado.

Tabla 7 Valores del coeficiente n de Manning para canales en suelos y rocas.

Características del canal		n
Para caudales desde 1 m ³ /s hasta 25 m ³ /s.	En suelos cohesivos, arenosos y en turbas.	0,0225
in / s nasta 25 m / s.	En suelos de grava-cascajo.	0,0250
Para caudales mayores de 25 m ³ /s.	En suelos cohesivos, arenosos y en turbas.	0,0200
100 25 M / 51	En suelos de grava-cascajo.	0,0225
	Con buena nivelación.	0,020 - 0,025
En rocas.	Con nivelación regular sin oquedades.	0,030 - 0,035
	Con nivelación regular con oquedades.	0,040 - 0,045

Tabla 8 Valores del coeficiente n de Manning para canales revestidos (CEN, 1984b).

Tipo de revestimiento	n
Hormigón con buen acabado.	0,012 - 0,014
Hormigón grueso.	0,015 - 0,017
Canaletas de hormigón prefabricado.	0,012 - 0,015
Encachado.	0,020 - 0,025
Piedra labrada.	0,013 - 0,017
Mampostería ordinaria.	0,017 - 0,030
Hormigón asfáltico.	0,013 - 0,016
Capa vegetal (según la altura de la vegetación).	0,030 - 0,035

Tabla 9 Valores de n para canales artificiales sin y con revestimiento (FHWA, 2006).

Características del canal	n
Tierra desnuda, superficie totalmente uniforme limpia y recientemente conformada.	0,022
Tierra desnuda, superficie totalmente uniforme con pocas hierbas.	0,028
Excavado con dragalina sin vegetación.	0,030
Excavado con dragalina con escasas malezas.	0,040
Sin mantenimiento. Densas malezas en toda la profundidad del flujo.	0,10
Sin mantenimiento. Fondo limpio y paredes con malezas.	0,08
Revestimiento con hierba. Buen mantenimiento.	0,06*

Revestimiento con hierba. Regular mantenimiento.	0,20*
Pavimento rígido.	0,016 - 0,023
Pavimento flexible (baja rugosidad).	0,013
Pavimento flexible (alta rugosidad).	0,016

* Disminuye un 30 % para flujo mayor de 0,21 m de profundidad (máxima profundidad del flujo 0,46 m).

Tabla 10 Valores de n para canales artificiales sin y con revestimiento (WSDOT, 2010).

Características del canal	n
Tierra desnuda, superficie uniforme limpia y recientemente conformada.	0,016 - 0,018
Tierra desnuda, superficie uniforme limpia con cierto desgaste.	0,018 - 0,020
Tierra desnuda, superficie totalmente uniforme con pequeñas hierbas y pocas malezas.	0,022 - 0,027
Suelo gravoso y limpio.	0,022 - 0,025
Tierra desnuda (sin hierba), sección completamente uniforme.	0,022 - 0,025
Sin revestimiento. Sección completamente uniforme con hierba.	0,025 - 0,030
Sin revestimiento Gran cantidad de mala hierba y planta acuática. Sección completamente uniforme.	0,030 - 0,035
Sin revestimiento Excavado con dragalina sin vegetación.	0,028 - 0,033
Sin revestimiento Talud limpio y base con guijarro.	0.030 - 0.040
Sin revestimiento Talud limpio y base con grava.	0.025 - 0.030

Sin mante del flujo.	0,08 - 0,012		
Sin mante	enimiento. Fondo limpio y paredes con malezas.	0,05 - 0,08	
Revestim	iento con hierba. Buen mantenimiento.	0,06*	
Revestim	iento con hierba. Regular mantenimiento.	0,20*	
	$D_{50} = 0.15 \ m$	0,030 - 0,035	
Riprap	$D_{50} = 0.32 \ m$	0,035 - 0,040	
	$D_{50} = 0,67 \ m$	0,040 - 0,045	
Cuneta re	0,014 - 0,016		
Cuneta revestida con pavimento flexible (baja rugosidad).		0,013	
Cuneta re	vestida pavimento flexible (alta rugosidad).	0,015	
Nota: en cunetas con pendiente pequeña donde los sedimentos pueden			

Nota: en cunetas con pendiente pequeña, donde los sedimentos pueden acumularse, incrementar en 0,002 el valor de n.

Tabla 11 Valores recomendados de n de Manning (Benítez, 2003).

Tipo de revestimiento	n
Tierra ordinaria con superficie uniforme.	0,02
Hierba (altura de la lámina de agua superior 15cm).	0,04
Hierba (altura de la lámina de agua inferior 15cm).	0,06
Hierba espesa.	0,10
Encachado de piedra rugosa.	0,04
Encachado de piedra lisa.	0,02
Hormigón rugoso.	0,024
Hormigón liso.	0,012

Tabla 12 Valores recomendados de n de Manning (NC, 1999).

Tipo de revestimiento	n
Revestimiento de hormigón.	0,013
Revestimiento de ladrillo en buen estado	0,015
Revestimiento de ladrillo en mal estado	0,020
Tierra en condiciones usuales	0,025
Tierra en malas condiciones	0,035
Tierra mezclada con hierba	0,050

Tabla 13 Velocidades máximas permisibles en cunetas (Benítez, 2003).

Tipo de material	Velocidad máxima (m/s)
Hierba bien cuidada.	1,80
Parcialmente cubierta de vegetación.	0,80 – 1,20
Arena fina o limo (poca o ninguna arcilla).	0,60 – 1,20
Arena - Arcillosa densa.	0,60 – 0,90
Arcilla muy densa con o sin grava.	1,20
Grava con limo.	1,00 – 1,50
Arcilla.	0,75 – 1,50
Pizarra.	1,30 – 2,00
Mampostería.	4,00
Hormigón.	4,50

Tabla 14 Velocidades medias máximas permisibles para canales en suelos arcillosos (CEN, 1984b).

Suelos	Velocidad máxima (m/s) Profundidad de circulación (m)							
arcillosos								
con una cohesión	0,5		1,0		3,0		5,0	
específica	Con un	contenid	o de sale	s fácilme	nte solub	oles (CaC	ll ₂ , MgCl ₂	, Na ₂ SO ₄ ,
de cálculo	Na ₂ CO ₃ ,	NaHCO ₃) dado en	% del pe	so del resi	duo solan	nente del :	suelo seco.
$(10^5 Pa)$	0,2	0,2 a 0,3	0,2	0,2 a 0,3	0,2	0,2 a 0,3	0,2	0,2 a 0,3
0,005	0,39	0,36	0,43	0,40	0,49	0,46	0,52	0,49
0,010	0,44	0,39	0,48	0,43	0,55	0,49	0,58	0,52
0,020	0,52	0,41	0,57	0,45	0,65	0,52	0,69	0,55
0,030	0,59	0,43	0,64	0,48	0,74	0,55	0,78	0,59
0,040	0,65	0,46	0,71	0,51	0,81	0,58	0,86	0,62
0,050	0,71	0,48	0,77	0,53	0,89	0,61	0,98	0,65
0,075	0,83	0,51	0,91	0,56	1,04	0,64	1,10	0,69
0,125	1,03	0,60	1,13	0,57	1,30	0,76	1,37	0,81
0,150	1,21	0,65	1,33	0,72	1,52	0,82	1,60	0,88
0,200	1,28	0,75	1,40	0,82	1,60	0,93	1,69	1,00
0,225	1,36	0,80	1,48	0,88	1,70	1,00	1,80	1,07
0,250	1,42	0,82	1,55	0,91	1,78	1,04	1,88	1,10
0,300	1,54	0,90	1,69	0,99	1,94	1,12	2,04	1,20
0,350	1,67	0,97	1,83	1,06	2,09	1,22	2,21	1,30
0,400	1,79	1,03	1,96	1,15	2,25	1,31	2,38	1,40
0,450	1,88	1,09	2,96	1,20	2,35	1,39	2,49	1,46
0,500	1,99	1,26	2,17	1,28	2,50	1,46	2,63	1,56
0,600	2,16	1,27	2,38	1,38	2,72	1,60	2,88	1,70

Tabla 15 Velocidades máximas permisibles en canales revestidos con hormigón (CEN, 1984b).

Resistencia de diseño	Velocidad máxima permisible en <i>m/s</i> a una profundidad de la corriente de:			
Kgf/cm ²	0,5 m	1,0 m	3,0 m	5,0 m
100	12,5	13,8	16,0	17,0
150	14,0	15,6	18,0	19,1
200	15,6	17.3	20.0	21,2
300	19,2	21,2	24,6	26,1

Tabla 16 Velocidades máximas permisibles para distintos revestimientos (FHWA, 2006).

Tipos de recubrimiento	Velocidad máxima (m/s)
Césped	1,22
Staked Sod	1,52
Lapped Sod	1,68
Riprap	1,83
Geotextil	1,22 - 2,448
Rígido	3,05

Tabla 17 Velocidades máximas permisibles con varios revestimientos (DNIT, 2006)

Cobertura superficial	Velocidad máxima (m/s)
Hierba común firmemente implantada.	1,50 - 1,80
Zona con hierba y suelo expuesto.	0,60 - 1,20
Arcilla.	0,80 - 1,30
Arcilla coloidal.	1,30 - 1,80
Fango.	0,35 - 0,85

Arena fina.	0,30 - 0,40
Arena media.	0,35 - 0,45
Guijarro fino.	0,50 - 0,80
Limo.	0,70 - 1,20
Enladrillado.	2,50
Hormigón de cemento Pórtland.	4,50
Aglomerado resistente.	2,00
Revestimiento bituminoso.	3,00 - 4,00

Tabla 18 Velocidades máximas permisibles con varios revestimientos (NC, 1999).

Cobertura superficial	Velocidad máxima (m/s)
Losa de hormigón.	4,00
Pavimento asfáltico	3,00 – 3,50
Calizas y areniscas	4,00
Tepes colocados horizontalmente	1,00
Tepes colocados verticalmente	1,60
Barro	1,10
Suelo arcilloso	1,00
Arena gruesa	0,80
Arena fina y mediana, suelo arenoso	0,40

Tabla 19 Valores del coeficiente de escurrimiento C para cuencas urbanizadas o por urbanizar.

Tipo de superficie	Coeficiente de escurrimiento C
Áreas planas, con zonas, aproximadamente, un 30 % impermeables.	0,40
Áreas de pendientes moderadas, con zonas, aproximadamente, un 50 % impermeable.	0,65
Áreas edificadas de pendientes moderadas, con zonas, aproximadamente, un 70 % impermeable.	0,80
Solares yermos.	0,10 - 0,30
Vías de asfalto.	0,75 - 0,95
Vías de hormigón.	0,80 - 0,95
Techos.	0,75 - 0,95
Manzanas comerciales.	0,70 - 0,95
Manzanas residenciales con edificios de apartamentos.	0,50 - 0,70
Manzanas residenciales con casas aisladas.	0,40 - 0,60
Manzanas con industrias ligeras.	0,50 - 0,80
Manzanas con industrias pesadas.	0,60 - 0,90

Tabla 20 Diámetro de las columnas de descarga de aguas pluviales (CEN, 1985).

Diámetro de las columnas de descarga de aguas pluviales (mm)	Gasto máximo (L/s)	Área de la cubierta (m²)
50	1,30	9 a 25
75	4,20	26 a 170
100	9,00	171 a 335
150	27,00	336 a 1 000
200	57,00	1 001 a 2 080

Tabla 21 Diámetro del colector de las aguas pluviales (CEN, 1985).

Diámetro del colector	Área de la cubierta (m^2)				
	Pendiente				
(mm)	0,7%	1%	2%	3%	4%
50	-	28	41	50	58
75	-	80	116	149	163
100	-	173	246	321	352
150	329	488	697	874	995
200	846	1023	1488	1875	2065
250	1533	1814	2557	3402	3720
300	2494	3022	4231	5508	6090

Tabla 22 Diámetro del bajante pluvial en función del gasto (CEN, 1983b).

Diámetro del bajante pluvial	Gasto máximo
(mm)	(<i>l/s</i>)
75	4,24
100	9,02
150	26,69
200	57,73

Tabla 23 Valores de rugosidad para alcantarillas de hormigón (Benítez, 2003).

Clase de alcantarilla	n
Tubo concreto juntas ásperas	0,016 - 0,017
Tubo concreto juntas ordinarias racionalmente lisas	0,015
Tubos concretos, juntas excelentes formas de acero	0,012 - 0,014

Tabla 24 Valores del coeficiente de rugosidad de Manning (Benítez, 2003).

Tubería	n	
Tipo de superficie	Condiciones	
Hormigón y cerámica	Buenas	0,013
Tromingon y ceramica	Malas	0,015
Hormigón poroso	Buenas	0,017
Tromingon poroso	Malas	0,021
Plástico	Buenas	0,013
Trastico	Malas	0,015
Metal	Buenas	0,017
1120001	Malas	0,021

Tabla 25 Valores del coeficiente de rugosidad de Manning (FHWA, 2006).

Material	Material			
Alcantarilla	Cajón	0,012		
de hormigón	Tubo	0,012		
T. 1. (12 in – 24 in	0,020		
Tubería de metal	30 in – 54 in	0,022		
	> de 60 <i>in</i>	0,024		
Tuborío	Polivinilo Clorídeo (PVC) (todos los diámetros)	0,012		
Tubería plástico	Polietileno			
	- Pared simple	0,024		
	- Pared doble	0,012		

Tabla 26 Valores del coeficiente para conductos de sección circular y cajón (WSDOT, 2010).

Material			n	
Hormigón			tubería	0,010-0,013
Tromingon	Horningon		cajón	0,012-0,015
Acero corrugado	Acero corrugado			
	Anulares			0,022-0.027
	18			0,012-0,013
Corrugaciones 2 2/3 x ½ in	Helicoidales	24 in		0,014-0,015
2 2/3 X /2 m	Helicoldales	36 in		0,017-0,018
		48 in		0,020-0,021
		60 in		0,021-0,022

		72 in	0,023-0,024
	Anulares		0,027-0.028
		54 in	0,020-0,023
Corrugaciones 3 x 1 <i>in</i>	Helicoidales	60 in	0,021-0,024
S X 1 III		72 in	0,023-0,026
		90 in	0,024-0,027
	Anulares	<u> </u>	0,025-0.026
	Helicoidales	54 in	0,019-0,022
Corrugaciones 5 x 1 in		60 in	0,020-0,023
5 X 1 in		72 in	0,021-0,024
		90 in	0,022-0,025
Acero o aluminio	espiral		0,012-0,013
PVC			0,009-0,015
Hierro fundido			0,013
Tubo de arcilla vitrificada			0,012-0,014
Ladrillo		0,014-0,017	

Tabla 27 Valores del coeficiente de escurrimiento C para cuencas urbanizadas o por urbanizar.

Tipo de superficie	Coeficiente de escurrimiento C
Áreas planas, con zonas, aproximadamente, un 30 % impermeables.	0,40
Áreas de pendientes moderadas, con zonas, aproximadamente, un 50 % impermeable.	0,65
Áreas edificadas de pendientes moderadas, con zonas, aproximadamente, un 70 % impermeable.	0,80
Solares yermos.	0,10 - 0,30
Vías de asfalto.	0,75 - 0,95
Vías de hormigón.	0,80 - 0,95
Techos.	0,75 - 0,95
Manzanas comerciales.	0,70 - 0,95
Manzanas residenciales con edificios de apartamentos.	0,50 - 0,70
Manzanas residenciales con casas aisladas.	0,40 - 0,60
Manzanas con industrias ligeras.	0,50 - 0,80
Manzanas con industrias pesadas.	0,60 - 0,90

Tabla 28a Valores del coeficiente de evaluación M.

Factores	Valores de M				
	40	30	20	10	
Relieve del terreno	Muy accidentado, pendientes mayores al 30 %.	Accidentado, pendiente entre el 10 y el 30 %.	Ondulado, pendiente entre el 5 y el 10 %.	Llano, pendientes inferiores al 5 %	
	20	15	10	5	
Permeabilidad del suelo	Muy impermeable.	Bastante impermeable.	Bastante permeable.	Muy permeable.	
300 200 200	Roca	Arcilla	Normal	Arena	
	20	15	10	5	
Vegetación	Ninguna.	Poca.	Bastante.	Mucha.	
		Menos del 10 % de la superficie.	Hasta el 50 % de la superficie.	Hasta el 90 % de la superficie.	
Capacidad de	20	15	10	5	
almacenamiento de agua	Ninguna.	Poca.	Bastante.	Mucha.	

Tabla 29 Valores del coeficiente de escurrimiento C.

Valores de M	100 – 75	75 - 50	50 - 30	30 - 25
Valores de C	0,80 – 0,65	0,65 – 0,50	0,50 – 0,35	0,35 – 0,20

Tabla 30 Valores de C para cuencas no afectadas por el crecimiento urbano.

		Tipo de suelo		
Tipo de cubierta del	Pendiente	Grueso	Medio	Fino
suelo	(%)	Areno-limoso	Arcilla arenosa	Arcillas
				compactas
	0-5	0,10	0,30	0,40
Monte	5 -10	0,25	0,35	0,50
	10-30	0,30	0,50	0,60
	0 - 5	0,10	0,30	0,40
Pastos	5 -10	0,16	0,36	0,55
naturales	10-30	0,22	0,42	0,60
	0-5	0,30	0,50	0,60
Suelos	5-10	0,40	0,60	0,70
cultivados	10-30	0,52	0,72	0,82

Tabla 31 Valores de C según el tipo de superficie de la cubierta de la edificación.

Tipo de terminación de la superficie de la cubierta	Coeficiente de escurrimiento C
Lámina de aluminio.	0,98
Pintura de aluminio.	0,98
Tejas de asbesto-cemento.	0,97
Tejas de barro cocido.	0,96
Soladura.	0,96
Riego de gravilla.	0,95

Riego de arena.	0,95

Tabla 32 Número de Curva de escurrimiento para algunos terrenos agrícolas (USDA, 1986).

Descripción de la cubierta		CN para los Grupos Hidrológicos de los Suelos			Grupos s Suelos
Tipo de cubierta	Condiciones Hidrológicas *	A	В	С	D
	Mala	68	79	86	89
Pradera o pastizal.	Regular	49	69	79	84
	Buena	39	61	74	80
Pradera: hierba continua, protegida del pastoreo y generalmente chapeada.	-	30	58	71	78
	Mala	48	67	70	83
Maleza: hierba mediana mezclada con arbustos como elemento mayor.	Regular	35	56	65	77
, and the second	Buena	30	48	77	73
	Mala	57	73	82	86
Bosques: con combinación de hierbas (huerto o granja).	Regular	43	65	76	82
	Buena	32	58	72	79
	Mala	45	66	77	83
Bosques.	Regular	36	60	73	79
	Buena	30	55	70	77
Granjas: con edificios, vías, carreteras y porciones de terreno.	-	59	74	82	86

Mala: < 30 % cubierta de tierra.

Buena: > 70 % cubierta de tierra. Regular: 30 a 70 % cubierta de tierra.

Tabla 33 Instalaciones industriales, fabriles y civiles.

Denominación del objeto de obra	Categoría	Probabilidad (%)	
Denomination del objeto de obra	Cutegoria	Diseño	Comprobación
Centrales electronucleares y termoeléctricas. Obras especiales de carácter civil.	I	1	0,1
Obras industriales y naves de almacenes de gran importancia. Centros de investigaciones de primer orden.	П	2	1
Obras industriales y naves de almacenes menores. Centros de investigaciones de segundo orden.	Ш	10	5

Tabla 34 Obras viales.

Denominación del objeto de obra Categoría	Categoría	Probabilidad (%)		
	Diseño	Comprobación		
Autopistas y vías férreas de carácter nacional, de especial importancia.	I	1	0,5	
Autopistas, carreteras y vías férreas de carácter interprovincial e intercantonal, de gran importancia económico-social.	П	2	1	
Carreteras y vías férreas de carácter intercantonal.	III	5	2	
Carreteras, terraplenes y vías férreas de carácter local, de menor	IV	10	5	

importancia en el orden económico-	
social.	

Tabla 35 Poblaciones.

Danaminación del objeto de obre		Probabilidad (%)		
Denominación del objeto de obra	Denominación del objeto de obra Categoría	Diseño	Comprobación	
Zonas de instalaciones de especial importancia militar y económica dentro de una ciudad.	I	1	0,1	
Zonas de centro económico de ciudades con categoría de capital. Zonas hospitalarias, de almacenamiento e industriales de primer orden.	П	2	1	
Zonas de centro económico de ciudad de primer o segundo orden. Zonas de almacenes menores. Zonas de desarrollo urbano con viviendas multiplantas. Zonas de edificaciones sociales y turísticas de importancia.	Ш	10	5	
Zonas de centro económico de ciudad de tercer orden. Zonas de viviendas de una planta. Edificaciones sociales y turísticas de menor importancia.	IV	20	10	

Tabla 36 Probabilidades de la precipitación en zonas urbanizadas.

Características de las áreas	Probabilidad de la precipitación (%)
Áreas de centrales electronucleares y termoeléctricas.	1
Zonas de instalaciones de especial importancia militar y económica. Áreas de almacenamiento de gran importancia. Zonas hospitalarias. Zonas de centro económico de ciudades Tipo 0. Zonas industriales de primer orden.	5
Zonas de desarrollo urbano con viviendas multiplantas. Zonas de almacenes menores. Zonas de edificaciones sociales, turísticas y agropecuarias de importancia. Zonas de centro económico de ciudad Tipo I y II.	10 a 20
Zonas de viviendas de una planta. Zonas de centro económico de ciudad Tipo III. Edificios sociales y agropecuarios de menor importancia.	20

Tabla 37 Probabilidades de proyecto en dependencia de la categoría de la obra.

Tipo de edificación	obra según su	Probabilidad de proyecto
	importancia	(%)
Centrales electronucleares y		
termoeléctricas.		1
Obras de especial importancia.	A	1
Naves de almacenes de gran importancia.		
Hospitales.		
Obras industriales de gran importancia.	В	2 y 5
Centros de investigación.		
Naves de almacenes menores.		
Edificios altos de viviendas.		
Obras industriales menores.	C	10
Edificios sociales y agropecuarios de		
importancia.		
Edificios bajos de viviendas.		
Edificios sociales y agropecuarios de	D	20
menor importancia.		

Tabla 38 Contribuciones de las áreas parciales de drenaje a los nodos o registros.

Nodo (Registro)	Áreas de contribución directa	Nodos de contribución directa	Observaciones
1	A ₁ +A ₅	-	Nodo inicial
2	A ₂	-	Nodo inicial
3	A3+A4+A6+A9	R ₁ +R ₂	
4	A ₁₀	-	Nodo inicial
5	A ₁₁ +A ₁₂ +A ₁₄	R ₃ +R ₄	
6	A ₁₅ +A ₁₆ +A ₁₈	R ₅	
7	A ₁₃	-	Nodo inicial
8	A ₇ +A ₈ +A ₁₇	R ₇	
9	A ₁₉ +A ₂₀	R ₆ +R ₈	Nodo final

Tabla 39 Tiempos de concentración hasta los nodos o registros.

Nodo	Tiempos de concentración hasta el nodo		Observaciones
(Registro)	Alternativas posibles	Identificación	Observaciones
1	$(t_{eT_{1A}}, t_{eT_{1B}})$ *	t_{cR_1}	Nodo inicial
2	$t_{eT_{2A}}$	t_{cR_2}	Nodo inicial
3	$(t_{cR_1} + t_{rR_{1-3}}, t_{cR_2} + t_{rR_{2-3}}) *$	t _{cR3} **	
4	$t_{eT_{4A}}$	t_{cR_4}	Nodo inicial
5	$(t_{cR_3} + t_{rR_{3-5}}, t_{cR_4} + t_{rR_{4-5}}) *$	t _{cR5} **	
6	$t_{cR_5} + t_{rR_{5-6}}$	t _{cR6} **	
7	$t_{eT_{7A}}$	t_{cR_7}	Nodo inicial
8	$t_{cR_7} + t_{rR_{7-8}}$	t _{cR8} **	

9	$(t_{cR_6} + t_{rR_{6-9}}, t_{cR_8} + t_{rR_{8-9}}) *$	t_{cR_9}	Nodo final

Tabla 40 Probabilidades para el cálculo de los gastos de diseño (QD)

Autopistas - Carreteras-

Vías urbanas.

Tipo de estructura	Categoría de la vía	Probabilidad del gasto de diseño	
		(%)	
Autopista	I - II	2	
Puentes, pasos	III - IV	5	
peatonales y			
alcantarillados.			

Tabla 41 Clasificación de los ríos de acuerdo al área de la cuenca y longitud.

Clasificación	Área de cuenca (AC)	Longitud (L)
Grandes	$200,00 \text{ km}^2 < AC$	40,00 km < L
Medianos	$50,00 \text{ km}^2 \le AC \le 200,00 \text{ km}^2$	10,00 km \leq L \leq 40,00 km
Pequeños	$AC < 50,00 \text{ km}^2$	L < 10,00 km

Tabla 42 cooeficientes de socavación

Gasto unitario de diseño (q₀) en (m³/s)	Coeficiente admisible de socavación general (α₁)
Hasta 2	2,20
3	2,10
5	1,70
10	1,40
15	1,30
20 y mayor	1,25

Bibliografía

Barrero Ripoll, A., & Pérez-Saborid, S.-P. (2005). Fundamentos y aplicaciones de la Mecánica de Fluidos. Ed. McGraw Hill.

Cano Gallego, R. (s.f.). *Flujo en tuberías y canales.* Medellín: Anales de la Facultad Nacional de Minas. No 61, 1985. 143 p.

Chanson, H. M.–H. (2002). Hidráulica del flujo en canales abiertos. Colombia: 560 p.

González Fernández, H., & Suárez R, A. y. (s.f.). *La Hidráulica para Ingenieros Civiles*. Biblioteca Universitaria Documento Digitalizado y Departamento de Ingeniería Civil.

González, L., Marrero, N., & Martínez J, B. y. (2001). Temas de Hidrología Superficial para Ingenieros.

Hernandez, J. (1976). Mecánica de fluidos y máquinas hidráulicas. Ed. UNED.

León, A. y. (2000). Hidráulica de canales.

Pérez Franco, D. (1983). Equipos De Bombeo. La Habana: Editorial Pueblo y Educación.

Soto, L. (1985). Temas de Ingeniería Hidráulica. Biblioteca Universitaria 627 STO. T.

Soto, L. (1985). Temas de Ingeniería Hidráulica. Biblioteca Universitaria 627 STO. T.

Vennard, J., & Street, R. (1979). Elementos de Mecánica de fluidos. Ed. Continental.